mscroggs.co.uk
mscroggs.co.uk

subscribe

Puzzles

15 December

Today's number is smallest three digit palindrome whose digits are all non-zero, and that is not divisible by any of its digits.

Show answer

20 December

What is the largest number that cannot be written in the form \(10a+27b\), where \(a\) and \(b\) are nonnegative integers (ie \(a\) and \(b\) can be 0, 1, 2, 3, ...)?

Show answer & extension

Elastic numbers

Throughout this puzzle, expressions like \(AB\) will represent the digits of a number, not \(A\) multiplied by \(B\).
A two-digit number \(AB\) is called elastic if:
  1. \(A\) and \(B\) are both non-zero.
  2. The numbers \(A0B\), \(A00B\), \(A000B\), ... are all divisible by \(AB\).
There are three elastic numbers. Can you find them?

Show answer & extension

14 December

In July, I posted the Combining Multiples puzzle.
Today's number is the largest number that cannot be written in the form \(27a+17b\), where \(a\) and \(b\) are positive integers (or 0).

Combining multiples

In each of these questions, positive integers should be taken to include 0.
1. What is the largest number that cannot be written in the form \(3a+5b\), where \(a\) and \(b\) are positive integers?
2. What is the largest number that cannot be written in the form \(3a+7b\), where \(a\) and \(b\) are positive integers?
3. What is the largest number that cannot be written in the form \(10a+11b\), where \(a\) and \(b\) are positive integers?
4. Given \(n\) and \(m\), what is the largest number that cannot be written in the form \(na+mb\), where \(a\) and \(b\) are positive integers?

Show answer & extension

Subsum

1) In a set of three integers, will there always be two integers whose sum is even?
2) How many integers must there be in a set so that there will always be three integers in the set whose sum is a multiple of 3?
3) How many integers must there be in a set so that there will always be four integers in the set whose sum is even?
4) How many integers must there be in a set so that there will always be three integers in the set whose sum is even?

Show answer & extension

Fill in the digits

Source: Chalkdust
Can you place the digits 1 to 9 in the boxes so that the three digit numbers formed in the top, middle and bottom rows are multiples of 17, 25 and 9 (respectively); and the three digit numbers in the left, middle and right columns are multiples of 11, 16 and 12 (respectively)?

Show answer & extension

Always a multiple?

Source: nrich
Take a two digit number. Reverse the digits and add the result to your original number. Your answer is multiple of 11.
Prove that the answer will be a multiple of 11 for any starting number.
Will this work with three digit numbers? Four digit numbers? \(n\) digit numbers?

Show answer & extension

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2019

Sunday Afternoon Maths LXVII

Coloured weights
Not Roman numerals

Advent calendar 2018

Sunday Afternoon Maths LXVI

Cryptic crossnumber #2

List of all puzzles

Tags

symmetry gerrymandering balancing colouring rectangles squares square numbers geometry median products speed parabolas doubling angles remainders fractions percentages algebra circles money crossnumbers chocolate time rugby spheres perfect numbers volume coins menace chess scales lines ellipses palindromes factorials crosswords averages number complex numbers probabilty cryptic clues range chalkdust crossnumber people maths planes 3d shapes calculus taxicab geometry multiplication partitions tiling cube numbers sport wordplay bases digits 2d shapes dates coordinates cryptic crossnumbers triangle numbers star numbers probability sum to infinity logic proportion perimeter addition means the only crossnumber graphs unit fractions clocks shapes irreducible numbers sequences dominos integration polygons numbers odd numbers multiples ave integers dice indices grids routes triangles elections pascal's triangle hexagons area quadratics differentiation digital clocks factors games sums cards floors prime numbers shape books regular shapes mean advent folding tube maps crossnumber functions surds dodecagons division arrows trigonometry christmas square roots

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2020