mscroggs.co.uk
mscroggs.co.uk

subscribe

Puzzles

19 December

Put the digits 1 to 9 (using each digit exactly once) in the boxes so that the sums are correct. The sums should be read left to right and top to bottom ignoring the usual order of operations. For example, 4+3×2 is 14, not 10. Today's number is the product of the numbers in the red boxes.
+= 7
× × ×
+= 0
÷ ÷ ÷
+= 2
=
4
=
35
=
18

Show answer

Tags: numbers, grids

11 December

Put the digits 1 to 9 (using each digit exactly once) in the boxes so that the sums are correct. The sums should be read left to right and top to bottom ignoring the usual order of operations. For example, 4+3×2 is 14, not 10. Today's number is the product of the numbers in the red boxes.
++= 15
+ + ÷
+= 10
+ ×
÷×= 3
=
16
=
1
=
30

Show answer

Tags: numbers, grids

5 December

Put the digits 1 to 9 (using each digit exactly once) in the boxes so that the sums are correct. The sums should be read left to right and top to bottom ignoring the usual order of operations. For example, 4+3×2 is 14, not 10. Today's number is the product of the numbers in the red boxes.
++= 15
+ +
++= 15
+ × ÷
++= 15
=
15
=
15
=
15

Show answer

Tags: numbers, grids

17 December

Put the digits 1 to 9 (using each digit exactly once) in the boxes so that the sums are correct. The sums should be read left to right and top to bottom ignoring the usual order of operations. For example, 4+3×2 is 14, not 10. Today's number is the product of the numbers in the red boxes.
++= 10
+ × ×
++= 12
+ +
++= 23
=
10
=
12
=
23

Show answer

Tags: numbers, grids

9 December

Put the digits 1 to 9 (using each digit exactly once) in the boxes so that the sums are correct. The sums should be read left to right and top to bottom ignoring the usual order of operations. For example, 4+3×2 is 14, not 10. Today's number is the largest number you can make with the digits in the red boxes.
++= 20
+ + ÷
+= 0
+ ×
÷×= 12
=
22
=
6
=
2

Show answer

Tags: numbers, grids

5 December

Put the digits 1 to 9 (using each digit exactly once) in the boxes so that the sums are correct. The sums should be read left to right and top to bottom ignoring the usual order of operations. For example, 4+3×2 is 14, not 10. Today's number is the product of the numbers in the red boxes.
×÷= 15
+ + +
×÷= 14
×÷= 27
=
9
=
5
=
5

Show answer

Tags: numbers, grids

21 December

Arrange the digits 1–9 (using each digit exactly once) so that the three digit number in: the middle row is a prime number; the bottom row is a square number; the left column is a cube number; the middle column is an odd number; the right column is a multiple of 11. The 3-digit number in the first row is today's number.
today's number
prime
square
cubeoddmultiple of 11

Show answer

18 December

Put the digits 1 to 9 (using each digit exactly once) in the boxes so that the sums are correct. The sums should be read left to right and top to bottom ignoring the usual order of operations. For example, 4+3×2 is 14, not 10. Today's number is the product of the numbers in the red boxes.
++= 11
+ × ×
++= 17
× - +
++= 17
=
11
=
17
=
17

Show answer

Tags: numbers, grids

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2023

Advent calendar 2022

Advent calendar 2021

Advent calendar 2020


List of all puzzles

Tags

binary prime numbers games integration money grids planes proportion functions circles people maths arrows shapes means graphs doubling partitions numbers factors averages triangles digital products polygons decahedra taxicab geometry polynomials multiplication unit fractions parabolas volume lines albgebra chocolate elections 2d shapes routes quadratics triangle numbers differentiation colouring spheres star numbers matrices digital clocks gerrymandering probabilty median even numbers number sets range rugby sum to infinity irreducible numbers wordplay books sums floors trigonometry probability cryptic crossnumbers geometry area geometric mean tournaments sequences addition logic perimeter coins chalkdust crossnumber dice cube numbers factorials determinants regular shapes odd numbers tangents speed multiples expansions ellipses cubics calculus division indices symmetry rectangles mean balancing time geometric means scales squares dominos axes digits advent consecutive numbers remainders pascal's triangle fractions integers clocks dates sport algebra coordinates christmas folding tube maps bases tiling crossnumbers dodecagons ave 3d shapes the only crossnumber palindromes crosswords cards hexagons square roots perfect numbers shape chess consecutive integers crossnumber square numbers percentages cryptic clues surds menace products combinatorics complex numbers quadrilaterals angles pentagons

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2024