Advent calendar 2017

6 December

\(p(x)\) is a quadratic with real coefficients. For all real numbers \(x\),
$$x^2+4x+14\leq p(x)\leq 2x^2+8x+18$$
\(p(2)=34\). What is \(p(6)\)?


Show me a random puzzle
 Most recent collections 

Advent calendar 2019

Sunday Afternoon Maths LXVII

Coloured weights
Not Roman numerals

Advent calendar 2018

Sunday Afternoon Maths LXVI

Cryptic crossnumber #2

List of all puzzles


taxicab geometry star numbers clocks digital clocks prime numbers multiples shape products parabolas area perfect numbers functions spheres speed money factorials sport squares logic square numbers indices mean fractions addition menace hexagons doubling irreducible numbers quadratics dodecagons shapes averages integers crosswords floors remainders circles time multiplication sequences coins dominos number complex numbers percentages triangles 2d shapes tiling sums planes crossnumbers trigonometry square roots christmas pascal's triangle partitions folding tube maps people maths games graphs 3d shapes books angles division cryptic crossnumbers rectangles triangle numbers bases integration dice chess cube numbers gerrymandering palindromes lines scales odd numbers digits surds calculus balancing chocolate routes arrows wordplay unit fractions symmetry algebra colouring perimeter probabilty ellipses probability volume range chalkdust crossnumber sum to infinity rugby means regular shapes differentiation cryptic clues the only crossnumber grids proportion dates coordinates polygons advent median cards geometry crossnumber factors numbers ave elections


Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2020