Advent calendar 2017

6 December

\(p(x)\) is a quadratic with real coefficients. For all real numbers \(x\),
$$x^2+4x+14\leq p(x)\leq 2x^2+8x+18$$
\(p(2)=34\). What is \(p(6)\)?


Show me a random puzzle
 Most recent collections 

Advent calendar 2019

Sunday Afternoon Maths LXVII

Coloured weights
Not Roman numerals

Advent calendar 2018

Sunday Afternoon Maths LXVI

Cryptic crossnumber #2

List of all puzzles


odd numbers digital clocks logic shapes division taxicab geometry folding tube maps routes differentiation complex numbers money volume factorials regular shapes unit fractions multiples probabilty chocolate proportion star numbers factors triangle numbers range geometry sequences wordplay dominos integration speed 3d shapes planes dodecagons sums digits mean graphs coins dice crosswords floors percentages angles perimeter fractions ellipses gerrymandering chess menace balancing means square roots integers coordinates clocks numbers crossnumber calculus sum to infinity the only crossnumber rugby hexagons people maths parabolas remainders rectangles spheres median crossnumbers grids addition surds number 2d shapes multiplication colouring pascal's triangle functions palindromes squares trigonometry cryptic clues dates arrows ave chalkdust crossnumber triangles christmas elections time tiling circles cube numbers perfect numbers books scales bases polygons games cards sport symmetry probability cryptic crossnumbers lines square numbers irreducible numbers products shape prime numbers partitions area doubling advent indices quadratics algebra averages


Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2020