Advent calendar 2017

6 December

\(p(x)\) is a quadratic with real coefficients. For all real numbers \(x\),
$$x^2+4x+14\leq p(x)\leq 2x^2+8x+18$$
\(p(2)=34\). What is \(p(6)\)?


Show me a random puzzle
 Most recent collections 

Sunday Afternoon Maths LXVII

Coloured weights
Not Roman numerals

Advent calendar 2018

Sunday Afternoon Maths LXVI

Cryptic crossnumber #2

Sunday Afternoon Maths LXV

Cryptic crossnumber #1
Breaking Chocolate
Square and cube endings

List of all puzzles


dates speed chocolate proportion complex numbers pascal's triangle parabolas surds 3d shapes angles palindromes differentiation rectangles grids advent balancing sport rugby quadratics crossnumbers logic numbers partitions christmas unit fractions floors doubling number menace factorials algebra polygons money triangle numbers cube numbers scales ave division colouring ellipses sequences remainders square roots means dodecagons cryptic crossnumbers square numbers lines shapes hexagons calculus games irreducible numbers sums probability probabilty regular shapes coordinates cryptic clues time functions dice percentages factors odd numbers addition wordplay crosswords star numbers integration triangles bases indices volume circles graphs fractions books symmetry digits shape spheres taxicab geometry 2d shapes squares area cards clocks mean coins geometry trigonometry multiplication sum to infinity prime numbers averages multiples people maths integers perfect numbers arrows chalkdust crossnumber planes routes perimeter folding tube maps chess


Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2019