mscroggs.co.uk
mscroggs.co.uk

subscribe

Puzzles

19 December

The diagram to the right shows a triangle. Two of the sides of the triangle have been split into three pieces, with lines drawn from the opposite vertex. In total, the diagram now contains 27 triangles of any size.
Another triangle has two of its sides split into eight pieces, with lines drawn from the opposite vertex. How many triangles (of any size) would this create?

Show answer

5 December

28 points are spaced equally around the circumference of a circle. There are 3276 ways to pick three of these points. The three picked points can be connected to form a triangle. Today's number is the number of these triangles that are isosceles.

Show answer

2 December

You have 15 sticks of length 1cm, 2cm, ..., 15cm (one of each length). How many triangles can you make by picking three sticks and joining their ends?
Note: Three sticks (eg 1, 2 and 3) lying on top of each other does not count as a triangle.
Note: Rotations and reflections are counted as the same triangle.

Show answer

12 December

There are 2600 different ways to pick three vertices of a regular 26-sided shape. Sometimes the three vertices you pick form a right angled triangle.
These three vertices form a right angled triangle.
Today's number is the number of different ways to pick three vertices of a regular 26-sided shape so that the three vertices make a right angled triangle.

 

Show answer

Is it equilateral?

In the diagram below, \(ABDC\) is a square. Angles \(ACE\) and \(BDE\) are both 75°.
Is triangle \(ABE\) equilateral? Why/why not?

Show answer

20 December

Earlier this year, I wrote a blog post about different ways to prove Pythagoras' theorem. Today's puzzle uses Pythagoras' theorem.
Start with a line of length 2. Draw a line of length 17 perpendicular to it. Connect the ends to make a right-angled triangle. The length of the hypotenuse of this triangle will be a non-integer.
Draw a line of length 17 perpendicular to the hypotenuse and make another right-angled triangle. Again the new hypotenuse will have a non-integer length. Repeat this until you get a hypotenuse of integer length. What is the length of this hypotenuse?

5 December

How many different triangles are there with a perimeter of 100 and each side having an integer length?
(different = not rotations or reflections)

Cutting corners

The diagram below shows a triangle \(ABC\). The line \(CE\) is perpendicular to \(AB\) and the line \(AD\) is perpedicular to \(BC\).
The side \(AC\) is 6.5cm long and the lines \(CE\) and \(AD\) are 5.6cm and 6.0cm respectively.
How long are the other two sides of the triangle?

Show answer

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2024

Advent calendar 2023

Advent calendar 2022

Advent calendar 2021


List of all puzzles

Tags

neighbours rugby partitions shape gerrymandering quadratics geometric means graphs median consecutive integers symmetry powers square roots ave dice people maths unit fractions squares shapes regular shapes tournaments pascal's triangle circles games sum to infinity percentages matrices routes cryptic clues 3d shapes proportion multiplication perfect numbers binary polynomials albgebra addition functions area perimeter combinatorics digital clocks chocolate means algebra ellipses factorials cards even numbers quadrilaterals hexagons determinants triangle numbers time division bases colouring planes clocks prime numbers consecutive numbers crosswords range decahedra factors surds geometry calculus square numbers fractions remainders cubics dates tangents pentagons grids crossnumbers integers numbers chess numbers grids elections complex numbers taxicab geometry cube numbers irreducible numbers doubling triangles geometric mean 2d shapes balancing dodecagons palindromes indices christmas multiples tiling sport probability digital products wordplay probabilty mean sets sequences square grids expansions star numbers products coins speed differentiation cryptic crossnumbers advent folding tube maps lines coordinates the only crossnumber parabolas logic number trigonometry scales angles digits sums crossnumber polygons menace dominos chalkdust crossnumber medians integration money spheres arrows rectangles averages axes floors volume books odd numbers

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2025