mscroggs.co.uk
mscroggs.co.uk

subscribe

Puzzles

19 December

The diagram to the right shows a triangle. Two of the sides of the triangle have been split into three pieces, with lines drawn from the opposite vertex. In total, the diagram now contains 27 triangles of any size.
Another triangle has two of its sides split into eight pieces, with lines drawn from the opposite vertex. How many triangles (of any size) would this create?

Show answer

5 December

28 points are spaced equally around the circumference of a circle. There are 3276 ways to pick three of these points. The three picked points can be connected to form a triangle. Today's number is the number of these triangles that are isosceles.

Show answer

2 December

You have 15 sticks of length 1cm, 2cm, ..., 15cm (one of each length). How many triangles can you make by picking three sticks and joining their ends?
Note: Three sticks (eg 1, 2 and 3) lying on top of each other does not count as a triangle.
Note: Rotations and reflections are counted as the same triangle.

Show answer

12 December

There are 2600 different ways to pick three vertices of a regular 26-sided shape. Sometimes the three vertices you pick form a right angled triangle.
These three vertices form a right angled triangle.
Today's number is the number of different ways to pick three vertices of a regular 26-sided shape so that the three vertices make a right angled triangle.

 

Show answer

Is it equilateral?

In the diagram below, \(ABDC\) is a square. Angles \(ACE\) and \(BDE\) are both 75°.
Is triangle \(ABE\) equilateral? Why/why not?

Show answer

20 December

Earlier this year, I wrote a blog post about different ways to prove Pythagoras' theorem. Today's puzzle uses Pythagoras' theorem.
Start with a line of length 2. Draw a line of length 17 perpendicular to it. Connect the ends to make a right-angled triangle. The length of the hypotenuse of this triangle will be a non-integer.
Draw a line of length 17 perpendicular to the hypotenuse and make another right-angled triangle. Again the new hypotenuse will have a non-integer length. Repeat this until you get a hypotenuse of integer length. What is the length of this hypotenuse?

5 December

How many different triangles are there with a perimeter of 100 and each side having an integer length?
(different = not rotations or reflections)

Cutting corners

The diagram below shows a triangle \(ABC\). The line \(CE\) is perpendicular to \(AB\) and the line \(AD\) is perpedicular to \(BC\).
The side \(AC\) is 6.5cm long and the lines \(CE\) and \(AD\) are 5.6cm and 6.0cm respectively.
How long are the other two sides of the triangle?

Show answer

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2024

Advent calendar 2023

Advent calendar 2022

Advent calendar 2021


List of all puzzles

Tags

consecutive numbers ave sport books gerrymandering graphs addition square grids sum to infinity combinatorics remainders geometric mean tiling crossnumbers proportion cubics circles axes wordplay tournaments coins area square roots rugby grids multiplication dates sequences expansions palindromes range balancing perimeter hexagons trigonometry probabilty products advent squares powers partitions bases digital clocks division the only crossnumber star numbers pascal's triangle christmas geometry multiples means surds cube numbers digits spheres 2d shapes chalkdust crossnumber games sets quadrilaterals indices unit fractions complex numbers albgebra triangles colouring floors numbers grids symmetry rectangles lines doubling factors folding tube maps mean differentiation determinants calculus cards tangents cryptic clues dodecagons triangle numbers odd numbers median 3d shapes polygons digital products probability menace chocolate binary clocks sums taxicab geometry arrows polynomials neighbours consecutive integers fractions pentagons shape time number ellipses dominos irreducible numbers coordinates numbers speed medians regular shapes people maths percentages dice perfect numbers functions integration matrices integers routes money quadratics chess factorials prime numbers algebra decahedra even numbers cryptic crossnumbers square numbers geometric means logic angles elections averages crosswords volume planes shapes parabolas scales

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2025