mscroggs.co.uk
mscroggs.co.uk

subscribe

Puzzles

21 December

The factors of 6 (excluding 6 itself) are 1, 2 and 3. \(1+2+3=6\), so 6 is a perfect number.
Today's number is the only three digit perfect number.

20 December

What is the largest number that cannot be written in the form \(10a+27b\), where \(a\) and \(b\) are nonnegative integers (ie \(a\) and \(b\) can be 0, 1, 2, 3, ...)?

Show answer & extension

Elastic numbers

Throughout this puzzle, expressions like \(AB\) will represent the digits of a number, not \(A\) multiplied by \(B\).
A two-digit number \(AB\) is called elastic if:
  1. \(A\) and \(B\) are both non-zero.
  2. The numbers \(A0B\), \(A00B\), \(A000B\), ... are all divisible by \(AB\).
There are three elastic numbers. Can you find them?

Show answer & extension

16 December

Put the digits 1 to 9 (using each digit exactly once) in the boxes so that the sums are correct. The sums should be read left to right and top to bottom ignoring the usual order of operations. For example, 4+3×2 is 14, not 10. Today's number is the largest number than can be made from the digits in red boxes.
××= 6
× × ×
××= 180
× × ×
××= 336
=
32
=
70
=
162

14 December

In July, I posted the Combining Multiples puzzle.
Today's number is the largest number that cannot be written in the form \(27a+17b\), where \(a\) and \(b\) are positive integers (or 0).

8 December

Today's number is the second smallest number that can be written as a×b×c×d×e×f×g×h×i, where a,b,...,i are all integers greater than 1.

5 December

Today's number is the number of ways that 35 can be written as the sum of distinct numbers, with none of the numbers in the sum being divisible by 9.
Clarification: By "numbers", I mean (strictly) positive integers. The sum of the same numbers in a different order is counted as the same sum: eg. 1+34 and 34+1 are not different sums. The trivial sum consisting of just the number 35 counts as a sum.

Largest odd factors

Pick a number. Call it \(n\). Write down all the numbers from \(n+1\) to \(2n\) (inclusive). For example, if you picked 7, you would write:
$$8,9,10,11,12,13,14$$
Below each number, write down its largest odd factor. Add these factors up. What is the result? Why?

Show answer

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2024

Advent calendar 2023

Advent calendar 2022

Advent calendar 2021


List of all puzzles

Tags

ave symmetry crosswords digits axes spheres pascal's triangle unit fractions mean multiplication pentagons graphs integers menace elections percentages sport arrows powers cryptic crossnumbers binary quadratics determinants neighbours taxicab geometry dodecagons planes means perimeter coordinates medians palindromes angles division sum to infinity proportion balancing chalkdust crossnumber 3d shapes cards integration square grids decahedra speed regular shapes dominos square numbers people maths factorials numbers cubics lines rugby remainders tiling sequences probabilty products geometry addition differentiation complex numbers crossnumbers advent rectangles sums averages partitions expansions circles trigonometry consecutive integers dice shape squares median digital clocks combinatorics books surds ellipses prime numbers odd numbers grids gerrymandering doubling functions probability shapes tangents bases digital products wordplay parabolas polygons logic sets calculus quadrilaterals indices chocolate geometric means floors routes 2d shapes hexagons coins colouring square roots triangles multiples games cube numbers money geometric mean even numbers cryptic clues christmas matrices algebra polynomials irreducible numbers fractions dates chess time albgebra the only crossnumber range clocks folding tube maps consecutive numbers numbers grids factors volume perfect numbers area tournaments star numbers scales triangle numbers number

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2025