mscroggs.co.uk
mscroggs.co.uk

subscribe

Puzzles

5 December

Put the digits 1 to 9 (using each digit exactly once) in the boxes so that the sums are correct. The sums should be read left to right and top to bottom ignoring the usual order of operations. For example, 4+3×2 is 14, not 10. Today's number is the product of the numbers in the red boxes.
++= 15
+ +
++= 15
+ × ÷
++= 15
=
15
=
15
=
15

Show answer

Tags: numbers, grids

4 December

If \(n\) is 1, 2, 4, or 6 then \((n!-3)/(n-3)\) is an integer. The largest of these numbers is 6.
What is the largest possible value of \(n\) for which \((n!-123)/(n-123)\) is an integer?

Show answer

3 December

190 is the smallest multiple of 10 whose digits add up to 10.
What is the smallest multiple of 15 whose digits add up to 15?

2 December

Holly adds up the first six even numbers, then adds on half of the next even number. Her total is 49.
Next, Holly adds up the first \(n\) even numbers then adds on half of the next even number. This time, her total is 465124. What is \(n\)?

Show answer & extension

1 December

Each interior angle of a regular triangle is 60°.
Each interior angle of a different regular polygon is 178°. How many sides does this polygon have?

Show answer

Advent 2022 logic puzzle

It's nearly Christmas and something terrible has happened: an evil Christmas-hater has set three drones loose above Santa's stables. As long as the drones are flying around, Santa is unable to take off to deliver presents to children all over the world. You need to help Santa by destroying the drones so that he can deliver presents before Christmas is ruined for everyone.
Each of the three drones was programmed with four integers between 1 and 20 (inclusive): the first two of these are the drone's starting position; the last two give the drone's daily speed. The drones have divided the sky above Santa's stables into a 20 by 20 grid. On 1 December, the drones will be at their starting position. Each day, every drone will add the first number in their daily speed to their horizontal position, and the second number to their vertical position. If the drone's position in either direction becomes greater than 20, the drone will subtract 20 from their position in that direction. Midnight in Santa's special Advent timezone is at 5am GMT, and so the day will change and the drones will all move at 5am GMT. For example, if a drone's starting position was (1, 12) and its movement was (5, 7), then:
You need to calculate each drone's starting position and daily speed, then work out where the drone currently is so you can shoot it down.
You can attempt to shoot down the drones here.

Show answer

24 December

The expression \((3x-1)^2\) can be expanded to give \(9x^2-6x+1\). The sum of the coefficients in this expansion is \(9-6+1=4\).
What is the sum of the coefficients in the expansion of \((3x-1)^7\)?

Show answer

23 December

How many numbers are there between 100 and 1000 that contain no 0, 1, 2, 3, or 4?

Show answer

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2024

Advent calendar 2023

Advent calendar 2022

Advent calendar 2021


List of all puzzles

Tags

polygons regular shapes cubics graphs tournaments rugby cube numbers christmas square grids folding tube maps pascal's triangle trigonometry tiling shapes matrices logic division money cryptic clues palindromes shape axes geometry sport pentagons unit fractions calculus multiples squares games speed doubling fractions symmetry dodecagons coins functions bases wordplay lines the only crossnumber chess algebra irreducible numbers perimeter differentiation geometric mean geometric means powers arrows means floors odd numbers ellipses time hexagons advent addition decahedra parabolas people maths consecutive integers chalkdust crossnumber surds perfect numbers factors star numbers integers probability prime numbers dice square roots dates volume grids proportion digits routes averages triangles elections number partitions indices sum to infinity even numbers median determinants spheres cryptic crossnumbers factorials chocolate remainders angles quadratics 2d shapes binary circles menace multiplication numbers consecutive numbers balancing albgebra gerrymandering sequences clocks sets medians sums taxicab geometry books percentages quadrilaterals rectangles digital clocks combinatorics products 3d shapes digital products range crossnumbers area integration ave complex numbers crosswords square numbers colouring numbers grids probabilty triangle numbers cards planes tangents mean scales expansions neighbours coordinates polynomials dominos

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2025