mscroggs.co.uk
mscroggs.co.uk
Click here to win prizes by solving the mscroggs.co.uk puzzle Advent calendar.
Click here to win prizes by solving the mscroggs.co.uk puzzle Advent calendar.

subscribe

Puzzles

22 December

There are 12 ways of placing 2 tokens on a 2×4 grid so that no two tokens are next to each other horizontally, vertically or diagonally:
Today's number is the number of ways of placing 2 tokens on a 2×21 grid so that no two tokens are next to each other horizontally, vertically or diagonally.

Show answer

21 December

Arrange the digits 1–9 (using each digit exactly once) so that the three digit number in: the middle row is a prime number; the bottom row is a square number; the left column is a cube number; the middle column is an odd number; the right column is a multiple of 11. The 3-digit number in the first row is today's number.
today's number
prime
square
cubeoddmultiple of 11

Show answer

20 December

What is the area of the largest area triangle that has one side of length 32 and one side of length 19?

Show answer

19 December

The equation \(352x^3-528x^2+90=0\) has three distinct real-valued solutions.
Today's number is the number of integers \(a\) such that the equation \(352x^3-528x^2+a=0\) has three distinct real-valued solutions.

Show answer

Tags: graphs, cubics

18 December

Put the digits 1 to 9 (using each digit exactly once) in the boxes so that the sums are correct. The sums should be read left to right and top to bottom ignoring the usual order of operations. For example, 4+3×2 is 14, not 10. Today's number is the product of the numbers in the red boxes.
++= 11
+ × ×
++= 17
× - +
++= 17
=
11
=
17
=
17

Show answer

Tags: numbers, grids

17 December

The digital product of a number is computed by multiplying together all of its digits. For example, the digital product of 6273 is 252.
Today's number is the smallest number whose digital product is 252.

Show answer

16 December

Each clue in this crossnumber is formed of two parts connected by a logical connective: and means that both parts are true; nand means that at most one part is true; or means that at least one part is true; nor means that neither part is true; xor means that exactly one part is true; xnor means that either both parts are false or both parts are true. No number starts with 0.

Show answer

15 December

The odd numbers are written in a pyramid.
What is the mean of the numbers in the 19th row?

Show answer

Tags: numbers

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2023

Advent calendar 2022

Advent calendar 2021

Advent calendar 2020


List of all puzzles

Tags

scales products addition calculus determinants differentiation trigonometry quadrilaterals graphs lines sets integration cryptic crossnumbers routes star numbers complex numbers triangles cubics surds crossnumbers consecutive numbers speed multiples dice means polynomials decahedra axes games 2d shapes symmetry sequences median money partitions albgebra range probability planes matrices cards coordinates algebra balancing logic coins irreducible numbers tangents multiplication consecutive integers ellipses time menace binary sums grids chalkdust crossnumber polygons numbers pascal's triangle geometric mean dominos odd numbers gerrymandering expansions proportion probabilty integers prime numbers crossnumber factorials floors dates square numbers angles tiling advent even numbers geometric means cryptic clues number rectangles elections chess taxicab geometry 3d shapes factors clocks parabolas sport volume crosswords square roots shapes tournaments averages mean perimeter indices christmas folding tube maps functions the only crossnumber rugby regular shapes remainders wordplay sum to infinity ave fractions area dodecagons triangle numbers palindromes cube numbers digits digital clocks circles geometry pentagons spheres percentages unit fractions shape combinatorics people maths quadratics colouring doubling squares books digital products perfect numbers arrows bases hexagons chocolate division

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2024