Advent calendar 2023
4 December
If \(n\) is 1, 2, 4, or 6 then \((n!-3)/(n-3)\) is an integer. The largest of these numbers is 6.
What is the largest possible value of \(n\) for which \((n!-123)/(n-123)\) is an integer?
Show answer
Hide answer
We can split this fraction into:
$$\frac{n!}{n-123}-\frac{123}{n-123}$$
As long as \(n\) is larger than 123, \(n-123\) is positive and less than \(n\). This means that \(n!/(n-123)\) is an integer, as \(n-123\) will be one of the numbers multiplied together in \(n!\).
(\((124!-123)/(124-123)\) is an integer, so the answer is at least 124 and \(n!/(2-123)\) is an integer when \(n\) is the answer.)
We now need to answer the simpler question: What is the largest value of \(n\) for which \(123/(n-123)\) is an integer? This will be when \(n-123\) is equal to 123, and so \(n\) is 246.