mscroggs.co.uk
mscroggs.co.uk
Click here to win prizes by solving the mscroggs.co.uk puzzle Advent calendar.
Click here to win prizes by solving the mscroggs.co.uk puzzle Advent calendar.

subscribe

Puzzles

20 December

Earlier this year, I wrote a blog post about different ways to prove Pythagoras' theorem. Today's puzzle uses Pythagoras' theorem.
Start with a line of length 2. Draw a line of length 17 perpendicular to it. Connect the ends to make a right-angled triangle. The length of the hypotenuse of this triangle will be a non-integer.
Draw a line of length 17 perpendicular to the hypotenuse and make another right-angled triangle. Again the new hypotenuse will have a non-integer length. Repeat this until you get a hypotenuse of integer length. What is the length of this hypotenuse?

19 December

The sum of all the numbers in the eighth row of Pascal's triangle.
Clarification: I am starting the counting of rows from 1, not 0. So (1) is the 1st row, (1 1) is the 2nd row, (1 2 1) is the 3rd row, etc.

18 December

The smallest number whose sum of digits is 25.

17 December

The number of degrees in one internal angle of a regular polygon with 360 sides.

16 December

Put the digits 1 to 9 (using each digit exactly once) in the boxes so that the sums are correct. The sums should be read left to right and top to bottom ignoring the usual order of operations. For example, 4+3×2 is 14, not 10. Today's number is the largest number than can be made from the digits in red boxes.
××= 6
× × ×
××= 180
× × ×
××= 336
=
32
=
70
=
162

15 December

A book has 386 pages. What do the page numbers on the two middle pages add up to?
Tags: numbers

14 December

In July, I posted the Combining Multiples puzzle.
Today's number is the largest number that cannot be written in the form \(27a+17b\), where \(a\) and \(b\) are positive integers (or 0).

13 December

Put the digits 1 to 9 (using each digit exactly once) in the boxes so that the sums are correct. The sums should be read left to right and top to bottom ignoring the usual order of operations. For example, 4+3×2 is 14, not 10. Today's number is the smaller number in a red box to the power of the larger number in a red box.
+-= 8
- - -
+÷= 3
+ ÷ ×
+×= 120
=
8
=
1
=
8
Tags: numbers, grids

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2023

Advent calendar 2022

Advent calendar 2021

Advent calendar 2020


List of all puzzles

Tags

dates fractions balancing sets scales books time multiples elections chocolate rectangles tangents sport averages trigonometry shape consecutive integers mean cubics the only crossnumber unit fractions means sum to infinity algebra odd numbers coins ellipses triangle numbers proportion clocks prime numbers partitions circles geometric means factorials range volume crossnumber christmas arrows games sequences shapes gerrymandering digits indices crossnumbers axes chalkdust crossnumber determinants geometry integers surds albgebra quadrilaterals triangles square numbers perimeter irreducible numbers 3d shapes addition cube numbers percentages lines parabolas digital clocks tournaments crosswords division coordinates planes hexagons advent multiplication routes consecutive numbers numbers dodecagons calculus integration sums pentagons wordplay bases median digital products quadratics area floors squares pascal's triangle tiling speed cryptic crossnumbers doubling spheres square roots polygons dice dominos expansions even numbers binary graphs combinatorics 2d shapes symmetry complex numbers star numbers people maths probabilty cryptic clues matrices number taxicab geometry palindromes regular shapes menace chess differentiation angles folding tube maps colouring polynomials functions cards decahedra probability factors money products logic grids remainders perfect numbers ave geometric mean rugby

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2024