mscroggs.co.uk
mscroggs.co.uk

subscribe

Puzzles

22 December

In bases 3 to 9, the number 112 is: \(11011_3\), \(1300_4\), \(422_5\), \(304_6\), \(220_7\), \(160_8\), and \(134_9\). In bases 3, 4, 6, 8 and 9, these representations contain no digit 2.
There are two 3-digit numbers that contain no 2 in their representations in all the bases between 3 and 9 (inclusive). Today's number is the smaller of these two numbers.

Show answer

21 December

Put the digits 1 to 9 (using each digit exactly once) in the boxes so that the sums are correct. The sums should be read left to right and top to bottom ignoring the usual order of operations. For example, 4+3×2 is 14, not 10. Today's number is the smallest number you can make with the digits in the red boxes.
+-= 7
÷ - ÷
+÷= 8
× × ×
+-= 7
=
12
=
5
=
28

Show answer

Tags: numbers, grids

20 December

The integers from 2 to 14 (including 2 and 14) are written on 13 cards (one number per card). You and a friend take it in turns to take one of the numbers.
When you have both taken five numbers, you notice that the product of the numbers you have collected is equal to the product of the numbers that your friend has collected. What is the product of the numbers on the three cards that neither of you has taken?

Show answer

19 December

The diagram below shows three squares and five circles. The four smaller circles are all the same size, and the red square's vertices are the centres of these circles.
The area of the blue square is 14 units. What is the area of the red square?

Show answer

18 December

The final round of game show starts with £1,000,000. You and your opponent take it in turn to take any value between £1 and £900. At the end of the round, whoever takes the final pound gets to take the money they have collected home, while the other player leaves with nothing.
You get to take an amount first. How much money should you take to be certain that you will not go home with nothing?

Show answer

Tags: numbers, games

17 December

Eve picks a three digit number then reverses its digits to make a second number. The second number is larger than her original number.
Eve adds her two numbers together; the result is 584. What was Eve's original number?

Show answer

16 December

Arrange the digits 1-9 in a 3×3 square so that: the median number in the first row is 6; the median number in the second row is 3; the mean of the numbers in the third row is 4; the mean of the numbers in the second column is 7; the range of the numbers in the third column is 2, The 3-digit number in the first column is today's number.
median 6
median 3
mean 4
today's numbermean 7range 2

Show answer

15 December

There are 5 ways to make 30 by multiplying positive integers (including the trivial way):
Today's number is the number of ways of making 30030 by multiplying.

Show answer

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2024

Advent calendar 2023

Advent calendar 2022

Advent calendar 2021


List of all puzzles

Tags

even numbers perfect numbers angles cube numbers sum to infinity tangents integration squares prime numbers complex numbers surds taxicab geometry digital products parabolas differentiation elections rugby unit fractions neighbours cubics circles means probability chalkdust crossnumber factorials products indices grids geometric mean decahedra digital clocks coordinates pascal's triangle algebra ave probabilty coins volume time consecutive numbers crossnumbers multiples division albgebra the only crossnumber rectangles symmetry hexagons sums crosswords cryptic crossnumbers palindromes dodecagons books lines perimeter percentages shape range quadratics binary digits shapes folding tube maps dice logic clocks chess graphs ellipses irreducible numbers powers numbers grids square roots tiling dominos number square numbers odd numbers spheres cryptic clues numbers area triangles remainders planes regular shapes trigonometry geometric means cards arrows sequences doubling star numbers geometry dates triangle numbers speed matrices polynomials partitions balancing polygons wordplay median floors tournaments advent pentagons integers colouring bases people maths combinatorics functions axes averages quadrilaterals money consecutive integers fractions chocolate menace christmas scales determinants routes factors sport medians 3d shapes 2d shapes sets games addition gerrymandering mean proportion expansions square grids calculus multiplication

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2025