mscroggs.co.uk
mscroggs.co.uk

subscribe

Puzzles

14 December

During one day, a digital clock shows times from 00:00 to 23:59. How many times during the day do the four digits shown on the clock add up to 14?

Show answer

13 December

Each clue in this crossnumber (except 5A) gives a property of that answer that is true of no other answer. For example: 7A is a multiple of 13; but 1A, 3A, 5A, 1D, 2D, 4D, and 6D are all not multiples of 13. No number starts with 0.

Show answer

12 December

For a general election, the Advent isles are split into 650 constituencies. In each constituency, exactly 99 people vote: everyone votes for one of the two main parties: the Rum party or the Land party. The party that receives the most votes in each constituency gets an MAP (Member of Advent Parliament) elected to parliament to represent that constituency.
In this year's election, exactly half of the 64350 total voters voted for the Rum party. What is the largest number of MAPs that the Rum party could have?

Show answer

11 December

Put the digits 1 to 9 (using each digit exactly once) in the boxes so that the sums are correct. The sums should be read left to right and top to bottom ignoring the usual order of operations. For example, 4+3×2 is 14, not 10. Today's number is the product of the red digits.
+÷= 2
+ ÷ ÷
÷÷= 3
÷ - ÷
÷÷= 1
=
2
=
1
=
1

Show answer

Tags: grids, numbers

10 December

For all values of \(x\), the function \(f(x)=ax+b\) satisfies
$$8x-8-x^2\leqslant f(x)\leqslant x^2.$$
What is \(f(65)\)?
Edit: The left-hand quadratic originally said \(8-8x-x^2\). This was a typo and has now been corrected.

Show answer

9 December

Arrange the digits 1-9 in a 3×3 square so that: all the digits in the first row are odd; all the digits in the second row are even; all the digits in the third row are multiples of 3; all the digits in the second column are (strictly) greater than 6; all the digits in the third column are non-prime. The number in the first column is today's number.
all odd
all even
all multiples of 3
today's numberall >6all non-prime

Show answer

Tags: numbers, grids

8 December

Carol uses the digits from 0 to 9 (inclusive) exactly once each to write five 2-digit even numbers, then finds their sum. What is the largest number she could have obtained?

Show answer

Tags: numbers

7 December

The sum of the coefficients in the expansion of \((x+1)^5\) is 32. Today's number is the sum of the coefficients in the expansion of \((2x+1)^5\).

Show answer

Tags: algebra

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2024

Advent calendar 2023

Advent calendar 2022

Advent calendar 2021


List of all puzzles

Tags

range unit fractions partitions pentagons cube numbers integration consecutive numbers squares spheres products speed matrices digital products dice scales christmas dates elections number axes pascal's triangle proportion crossnumbers 3d shapes cryptic clues factorials prime numbers area integers square grids money geometric mean menace cards numbers grids coins advent binary surds perimeter wordplay people maths cryptic crossnumbers geometric means 2d shapes taxicab geometry folding tube maps calculus sequences albgebra volume regular shapes addition sums neighbours dodecagons tournaments mean colouring polynomials functions consecutive integers averages planes percentages triangle numbers remainders odd numbers arrows probability shapes rectangles fractions shape sum to infinity grids gerrymandering routes palindromes symmetry digits graphs factors multiplication crosswords ave the only crossnumber chalkdust crossnumber rugby doubling games cubics polygons algebra sets means bases square numbers books hexagons square roots indices even numbers powers differentiation time probabilty sport quadrilaterals medians clocks geometry perfect numbers trigonometry expansions decahedra tiling numbers quadratics tangents irreducible numbers ellipses chocolate triangles lines dominos star numbers angles chess complex numbers multiples balancing parabolas median floors combinatorics digital clocks division logic coordinates determinants circles

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2025