mscroggs.co.uk
mscroggs.co.uk

subscribe

Puzzles

20 December

18 can be written as the sum of 3 consecutive (strictly) positive integers: 5 + 6 + 7.
18 can also be written as the sum of 4 consecutive (strictly) positive integers: 3 + 4 + 5 + 6.
18 is in fact the smallest number that can be written as the sum of both 3 and 4 consecutive (strictly) positive integers.
Today's number is the smallest number that can be written as the sum of both 12 and 13 consecutive (strictly) positive integers.

Show answer

Tags: numbers, sums

24 December

There are six 3-digit numbers with the property that the sum of their digits is equal to the product of their digits. Today's number is the largest of these numbers.

Show answer

6 December

Noel's grandchildren were in born in November in consecutive years. Each year for Christmas, Noel gives each of his grandchildren their age in pounds.
Last year, Noel gave his grandchildren a total of £208. How much will he give them in total this year?

Show answer

20 December

What is the largest number that cannot be written in the form \(10a+27b\), where \(a\) and \(b\) are nonnegative integers (ie \(a\) and \(b\) can be 0, 1, 2, 3, ...)?

Show answer & extension

Square pairs

Source: Maths Jam
Can you order the integers 1 to 16 so that every pair of adjacent numbers adds to a square number?
For which other numbers \(n\) is it possible to order the integers 1 to \(n\) in such a way?

Show answer

14 December

In July, I posted the Combining Multiples puzzle.
Today's number is the largest number that cannot be written in the form \(27a+17b\), where \(a\) and \(b\) are positive integers (or 0).

Combining multiples

In each of these questions, positive integers should be taken to include 0.
1. What is the largest number that cannot be written in the form \(3a+5b\), where \(a\) and \(b\) are positive integers?
2. What is the largest number that cannot be written in the form \(3a+7b\), where \(a\) and \(b\) are positive integers?
3. What is the largest number that cannot be written in the form \(10a+11b\), where \(a\) and \(b\) are positive integers?
4. Given \(n\) and \(m\), what is the largest number that cannot be written in the form \(na+mb\), where \(a\) and \(b\) are positive integers?

Show answer & extension

Subsum

1) In a set of three integers, will there always be two integers whose sum is even?
2) How many integers must there be in a set so that there will always be three integers in the set whose sum is a multiple of 3?
3) How many integers must there be in a set so that there will always be four integers in the set whose sum is even?
4) How many integers must there be in a set so that there will always be three integers in the set whose sum is even?

Show answer & extension

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2024

Advent calendar 2023

Advent calendar 2022

Advent calendar 2021


List of all puzzles

Tags

digital products dice folding tube maps matrices cards wordplay geometry polygons remainders functions surds crosswords range symmetry numbers grids chess averages factors floors digits cryptic clues multiples differentiation trigonometry odd numbers planes dates tiling scales taxicab geometry squares square grids median spheres geometric mean lines ellipses doubling colouring binary shape integration ave geometric means money digital clocks chocolate cube numbers powers determinants prime numbers balancing sums 2d shapes hexagons graphs means products routes chalkdust crossnumber coordinates medians clocks advent time calculus books neighbours shapes axes percentages grids dodecagons albgebra tangents arrows bases sequences coins rectangles christmas unit fractions sets factorials speed games logic cubics volume consecutive numbers angles indices probabilty circles partitions people maths division probability square roots the only crossnumber number triangles elections quadrilaterals regular shapes pentagons consecutive integers numbers square numbers perimeter mean 3d shapes sum to infinity polynomials rugby parabolas pascal's triangle integers area quadratics irreducible numbers addition triangle numbers crossnumbers proportion cryptic crossnumbers tournaments gerrymandering even numbers fractions perfect numbers multiplication combinatorics decahedra sport dominos menace star numbers algebra expansions complex numbers palindromes

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2025