mscroggs.co.uk
mscroggs.co.uk

subscribe

Puzzles

Find them all

Find all continuous positive functions, \(f\) on \([0,1]\) such that:
$$\int_0^1 f(x) dx=1\\ \mathrm{and }\int_0^1 xf(x) dx=\alpha\\ \mathrm{and }\int_0^1 x^2f(x) dx=\alpha^2$$

Show answer & extension

If you enjoyed this puzzle, check out Sunday Afternoon Maths XXXIV,
puzzles about functions, or a random puzzle.

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2024

Advent calendar 2023

Advent calendar 2022

Advent calendar 2021


List of all puzzles

Tags

decahedra grids dates medians palindromes multiplication tangents neighbours averages logic digital products polygons integers powers binary factors 3d shapes games rectangles perimeter geometric means chalkdust crossnumber regular shapes dominos number sport division square numbers expansions multiples digital clocks consecutive integers taxicab geometry geometric mean ellipses sum to infinity shape addition means people maths quadrilaterals christmas menace integration bases squares differentiation numbers grids trigonometry ave remainders colouring irreducible numbers pascal's triangle geometry even numbers rugby dice scales coins speed advent dodecagons sets proportion numbers factorials cube numbers axes cubics books elections balancing square grids coordinates products triangle numbers gerrymandering hexagons complex numbers crosswords consecutive numbers tiling clocks sequences cryptic crossnumbers partitions money prime numbers probability area odd numbers unit fractions albgebra volume fractions time matrices spheres polynomials doubling cards sums chocolate digits surds median shapes probabilty 2d shapes indices folding tube maps the only crossnumber quadratics combinatorics perfect numbers calculus percentages star numbers algebra range wordplay pentagons square roots planes routes circles crossnumber cryptic clues symmetry graphs parabolas arrows functions lines determinants mean angles floors tournaments chess triangles crossnumbers

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2025