Find them all

Find all continuous positive functions, \(f\) on \([0,1]\) such that:
$$\int_0^1 f(x) dx=1\\ \mathrm{and }\int_0^1 xf(x) dx=\alpha\\ \mathrm{and }\int_0^1 x^2f(x) dx=\alpha^2$$

Show answer & extension

If you enjoyed this puzzle, check out Sunday Afternoon Maths XXXIV,
puzzles about functions, or a random puzzle.


Show me a random puzzle
 Most recent collections 

Advent calendar 2019

Sunday Afternoon Maths LXVII

Coloured weights
Not Roman numerals

Advent calendar 2018

Sunday Afternoon Maths LXVI

Cryptic crossnumber #2

List of all puzzles


median cryptic crossnumbers digits books cube numbers polygons trigonometry symmetry chalkdust crossnumber geometry bases hexagons advent cards triangle numbers division palindromes factors angles coordinates integers square roots grids functions calculus dominos floors partitions probabilty sequences sums means tiling products crosswords speed multiplication circles routes rugby numbers triangles squares crossnumber dodecagons algebra pascal's triangle 3d shapes elections unit fractions range scales gerrymandering time quadratics sum to infinity cryptic clues square numbers shapes complex numbers people maths planes mean shape addition averages perfect numbers area prime numbers indices ave money volume probability colouring number irreducible numbers dice menace perimeter games arrows coins the only crossnumber christmas fractions crossnumbers graphs doubling star numbers taxicab geometry 2d shapes percentages surds chocolate spheres wordplay parabolas remainders dates integration lines factorials digital clocks clocks folding tube maps multiples ellipses differentiation sport balancing logic odd numbers regular shapes chess rectangles proportion


Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2020