mscroggs.co.uk
mscroggs.co.uk

subscribe

Puzzles

Find them all

Find all continuous positive functions, \(f\) on \([0,1]\) such that:
$$\int_0^1 f(x) dx=1\\ \mathrm{and }\int_0^1 xf(x) dx=\alpha\\ \mathrm{and }\int_0^1 x^2f(x) dx=\alpha^2$$

Show answer & extension

If you enjoyed this puzzle, check out Sunday Afternoon Maths XXXIV,
puzzles about integration, or a random puzzle.

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2023

Advent calendar 2022

Advent calendar 2021

Advent calendar 2020


List of all puzzles

Tags

ellipses consecutive integers volume parabolas dice differentiation integration means sport lines numbers odd numbers fractions partitions squares rectangles money speed angles crossnumbers cubics gerrymandering tournaments division cryptic crossnumbers chalkdust crossnumber coordinates symmetry logic floors polynomials graphs sum to infinity triangle numbers proportion even numbers probabilty scales folding tube maps geometry prime numbers circles ave integers addition chocolate mean number menace palindromes geometric means wordplay elections the only crossnumber indices advent complex numbers quadratics people maths clocks dodecagons doubling factors matrices remainders rugby cards products sets dominos crossnumber perimeter decahedra calculus digital products bases irreducible numbers spheres christmas cryptic clues median quadrilaterals sums regular shapes expansions books algebra 3d shapes consecutive numbers square roots binary probability averages taxicab geometry games star numbers planes area shapes shape triangles dates cube numbers combinatorics time sequences arrows multiples tiling surds geometric mean routes 2d shapes hexagons unit fractions pascal's triangle colouring crosswords percentages functions digits multiplication coins grids axes chess determinants tangents albgebra perfect numbers square numbers range balancing trigonometry polygons digital clocks pentagons factorials

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2024