mscroggs.co.uk
mscroggs.co.uk

subscribe

Puzzles

Double derivative

What is
$$\frac{d}{dy}\left(\frac{dy}{dx}\right)$$
when:
(i) \(y=x\)
(ii) \(y=x^2\)
(iii) \(y=x^3\)
(iv) \(y=x^n\)
(v) \(y=e^x\)
(vi) \(y=\sin(x)\)?

Show answer & extension

If you enjoyed this puzzle, check out Sunday Afternoon Maths XXIX,
puzzles about differentiation, or a random puzzle.

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2024

Advent calendar 2023

Advent calendar 2022

Advent calendar 2021


List of all puzzles

Tags

determinants cryptic crossnumbers star numbers medians crossnumbers range odd numbers geometric means factors volume digital products remainders graphs powers square numbers books dates lines chocolate median shape integration cryptic clues multiplication 2d shapes binary parabolas perfect numbers irreducible numbers expansions speed the only crossnumber taxicab geometry pentagons planes time prime numbers decahedra factorials addition chess elections clocks ellipses trigonometry coordinates angles spheres cubics dominos menace means symmetry calculus perimeter numbers grids matrices logic rugby bases sums doubling sport number neighbours cards rectangles polygons gerrymandering sets complex numbers circles probability differentiation colouring integers polynomials functions combinatorics unit fractions probabilty quadratics tiling digital clocks palindromes hexagons digits sum to infinity dodecagons shapes consecutive integers grids sequences ave dice money albgebra balancing proportion christmas even numbers people maths partitions percentages averages wordplay tangents tournaments coins games indices multiples 3d shapes numbers consecutive numbers cube numbers geometry triangles area square roots triangle numbers surds crosswords quadrilaterals mean pascal's triangle products division floors fractions scales squares regular shapes axes chalkdust crossnumber square grids advent routes arrows folding tube maps geometric mean algebra crossnumber

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2025