mscroggs.co.uk
mscroggs.co.uk

subscribe

Puzzles

No change

"Give me change for a dollar, please," said the customer.
"I'm sorry," said the cashier, "but I can't do it with the coins I have. In fact, I can't change a half dollar, quarter, dime or nickel."
"Do you have any coins at all?" asked the customer.
"Oh yes," said the cashier, "I have $1.15 in coins."
Which coins are in the cash register?
(The available coins are 50¢, 25¢, 10¢ 5¢ and 1¢.)

Show answer & extension

Tags: money

Dirty work

Timothy, Urban, and Vincent are digging identical holes in a field.
When Timothy and Urban work together, they dig 1 hole in 4 days.
When Timothy and Vincent work together, they dig 1 hole in 3 days.
When Urban and Vincent work together, they dig 1 hole in 2 days.
Working alone, how long does it take Timothy to dig one hole?

Show answer & extension

Square in a triangle

Source: Maths Jam
A right-angled triangle has short sides of length \(a\) and \(b\). A square is drawn in the triangle so that two sides lie on the sides of the triangle and a corner lies on the hypotenuse.
What is the length of a side of the square?

Show answer & extension

Double derivative

What is
$$\frac{d}{dy}\left(\frac{dy}{dx}\right)$$
when:
(i) \(y=x\)
(ii) \(y=x^2\)
(iii) \(y=x^3\)
(iv) \(y=x^n\)
(v) \(y=e^x\)
(vi) \(y=\sin(x)\)?

Show answer & extension

Equal opportunity

Can two (six-sided) dice be weighted so that the probability of each of the numbers 2, 3, ..., 12 is the same?

Show answer & extension

Three squares

Source: Numberphile
The diagram shows three squares with diagonals drawn on and three angles labelled.
What is the value of \(\alpha+\beta+\gamma\)?

Show answer & extension

The ace of spades

I have three packs of playing cards with identical backs. Call the packs A, B and C.
I draw a random card from pack A and shuffle it into pack B.
I now turn up the top card of pack A, revealing the Queen of Hearts.
Next, I draw a card at random from pack B and shuffle it into pack C. Then, I turn up the top card of pack B, revealing another Queen of Hearts.
I now draw a random card from pack C and place it at the bottom of pack A.
What is the probability that the card at the top of pack C is the Ace of Spades?

Show answer

3n+1

Let \(S=\{3n+1:n\in\mathbb{N}\}\) be the set of numbers one more than a multiple of three.
(i) Show that \(S\) is closed under multiplication.
ie. Show that if \(a,b\in S\) then \(a\times b\in S\).
Let \(p\in S\) be irreducible if \(p\not=1\) and the only factors of \(p\) in \(S\) are \(1\) and \(p\). (This is equivalent to the most commonly given definition of prime.)
(ii) Can each number in \(S\) be uniquely factorised into irreducibles?

Show answer & extension

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2024

Advent calendar 2023

Advent calendar 2022

Advent calendar 2021


List of all puzzles

Tags

range logic rectangles axes division squares dice games functions medians sets christmas indices taxicab geometry integration cryptic crossnumbers wordplay cube numbers sums albgebra irreducible numbers square numbers products quadrilaterals area pascal's triangle clocks digits doubling perimeter chalkdust crossnumber digital clocks remainders perfect numbers combinatorics multiplication chess percentages cryptic clues crossnumbers time decahedra factorials sport star numbers gerrymandering graphs money calculus neighbours tournaments planes integers digital products geometry books ave ellipses bases factors balancing pentagons 3d shapes expansions numbers grids floors surds scales quadratics proportion square roots crosswords chocolate arrows cards even numbers folding tube maps elections coordinates spheres shape triangle numbers mean addition routes palindromes lines 2d shapes rugby geometric mean symmetry speed tangents numbers volume partitions colouring tiling advent polygons shapes differentiation the only crossnumber matrices menace probability powers prime numbers angles sequences averages hexagons grids fractions sum to infinity people maths median odd numbers trigonometry cubics determinants number means algebra regular shapes dominos square grids complex numbers polynomials parabolas probabilty coins multiples dodecagons circles triangles binary unit fractions dates geometric means consecutive integers consecutive numbers

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2025