mscroggs.co.uk
mscroggs.co.uk

subscribe

Puzzles

17 December

If you expand \((a+b+c)^2\), you get \(a^2+b^2+c^2+2ab+2ac+2bc\). This has 6 terms.
How many terms does the expansion of \((a+b+c+d+e+f)^5\) have?

Show answer

16 December

Some numbers can be written as the sum of two or more consecutive positive integers, for example:
$$7=3+4$$ $$18=5+6+7$$
Some numbers (for example 4) cannot be written as the sum of two or more consecutive positive integers. What is the smallest three-digit number that cannot be written as the sum of two or more consecutive positive integers?

Show answer & extension

15 December

The arithmetic mean of a set of \(n\) numbers is computed by adding up all the numbers, then dividing the result by \(n\). The geometric mean of a set of \(n\) numbers is computed by multiplying all the numbers together, then taking the \(n\)th root of the result.
The arithmetic mean of the digits of the number 132 is \(\tfrac13(1+3+2)=2\). The geometric mean of the digits of the number 139 is \(\sqrt[3]{1\times3\times9}\)=3.
What is the smallest three-digit number whose first digit is 4 and for which the arithmetic and geometric means of its digits are both non-zero integers?

Show answer & extension

14 December

The function \(f(x)=ax+b\) (where \(a\) and \(b\) are real constants) satisfies
$$-x^3+2x^2+6x-9\leqslant f(x)\leqslant x^2-2x+3$$
whenever \(0\leqslant x\leqslant3\). What is \(f(200)\)?

Show answer

13 December

Today's number is given in this crossnumber. No number in the completed grid starts with 0.

Show answer

12 December

What is the smallest value of \(n\) such that
$$\frac{500!\times499!\times498!\times\dots\times1!}{n!}$$
is a square number?

Show answer

11 December

Put the digits 1 to 9 (using each digit exactly once) in the boxes so that the sums are correct. The sums should be read left to right and top to bottom ignoring the usual order of operations. For example, 4+3×2 is 14, not 10. Today's number is the product of the numbers in the red boxes.
++= 15
+ + ÷
+= 10
+ ×
÷×= 3
=
16
=
1
=
30

Show answer

Tags: numbers, grids

10 December

How many integers are there between 100 and 1000 whose digits add up to an even number?

Show answer

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2024

Advent calendar 2023

Advent calendar 2022

Advent calendar 2021


List of all puzzles

Tags

digits rugby rectangles chess digital products mean integers angles determinants indices quadrilaterals sets circles coins polygons shapes time logic books wordplay coordinates geometric mean doubling proportion numbers grids speed expansions volume median tournaments matrices triangle numbers division surds pascal's triangle clocks fractions consecutive numbers tangents perfect numbers crossnumbers number powers colouring squares cube numbers partitions sums multiples sequences regular shapes square numbers percentages routes binary axes lines games addition factors square roots prime numbers grids irreducible numbers pentagons crosswords balancing money 2d shapes complex numbers elections taxicab geometry square grids geometry differentiation products planes arrows people maths dominos star numbers polynomials symmetry odd numbers geometric means bases multiplication palindromes dice chocolate consecutive integers ave sport decahedra spheres neighbours triangles probabilty numbers graphs cards hexagons the only crossnumber even numbers floors cryptic crossnumbers scales calculus ellipses advent cryptic clues dodecagons quadratics albgebra medians unit fractions gerrymandering functions folding tube maps area tiling remainders range trigonometry combinatorics digital clocks algebra perimeter means chalkdust crossnumber averages 3d shapes christmas cubics probability factorials shape integration parabolas dates menace sum to infinity

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2025