mscroggs.co.uk
mscroggs.co.uk
Click here to win prizes by solving the mscroggs.co.uk puzzle Advent calendar.
Click here to win prizes by solving the mscroggs.co.uk puzzle Advent calendar.

subscribe

Puzzles

Powerful quadratics

Source: nrich
Find all real solutions to
$$(x^2-7x+11)^{(x^2-11x+30)}=1.$$

Show answer

Two tangents

Source: Reddit
Find a line which is tangent to the curve \(y=x^4-4x^3\) at 2 points.

Show answer

Blackboard sums

The numbers 1 to 20 are written on a blackboard. Each turn, you may erase two numbers, \(a\) and \(b\) and write the sum \(a+b\) in their place. You continue until only one number remains.
What is the largest number you can make?

Show answer & extension

Tags: numbers

Hat check

Three logicians, A, B and C, are wearing hats. Each has a strictly positive integer written on it. The number on one of the hats is the sum of the numbers on the other two.
The logicians say:
A: I don't know the number on my hat.
B: The number on my hat is 15.
Which numbers are on hats A and C?

Show hint


Show answer

Tags: logic

Combining multiples

In each of these questions, positive integers should be taken to include 0.
1. What is the largest number that cannot be written in the form \(3a+5b\), where \(a\) and \(b\) are positive integers?
2. What is the largest number that cannot be written in the form \(3a+7b\), where \(a\) and \(b\) are positive integers?
3. What is the largest number that cannot be written in the form \(10a+11b\), where \(a\) and \(b\) are positive integers?
4. Given \(n\) and \(m\), what is the largest number that cannot be written in the form \(na+mb\), where \(a\) and \(b\) are positive integers?

Show answer & extension

Cross diagonal cover problem

Draw with an \(m\times n\) rectangle, split into unit squares. Starting in the top left corner, move at 45° across the rectangle. When you reach the side, bounce off. Continue until you reach another corner of the rectangle:
How many squares will be coloured in when the process ends?

Show answer

Lots of ones

Is any of the numbers 11, 111, 1111, 11111, ... a square number?

Show answer

An integral

Source: Alex Bolton (inspired by Book Proofs blog)
What is
$$\int_0^{\frac\pi2}\frac1{1+\tan^a(x)}\,dx?$$

Show hint


Show answer & extension

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2023

Advent calendar 2022

Advent calendar 2021

Advent calendar 2020


List of all puzzles

Tags

determinants remainders crossnumber 2d shapes addition integration money ellipses factors folding tube maps bases ave division sums chocolate books dominos irreducible numbers planes consecutive integers square numbers unit fractions percentages spheres menace doubling triangles prime numbers palindromes consecutive numbers clocks wordplay number advent probabilty coordinates the only crossnumber crossnumbers taxicab geometry quadratics balancing hexagons factorials speed quadrilaterals geometry probability symmetry products dice polygons shape matrices odd numbers mean triangle numbers complex numbers geometric mean scales polynomials star numbers differentiation sequences median digital clocks tangents even numbers tournaments elections people maths tiling graphs axes parabolas numbers perfect numbers range combinatorics circles square roots shapes indices angles cryptic crossnumbers means time volume binary routes lines squares functions christmas regular shapes perimeter partitions decahedra cards dates cube numbers cubics integers albgebra dodecagons algebra logic cryptic clues expansions multiples grids sum to infinity arrows pentagons surds crosswords rugby calculus sport colouring geometric means digital products sets gerrymandering 3d shapes fractions floors rectangles chalkdust crossnumber games multiplication trigonometry area proportion averages coins chess pascal's triangle digits

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2024