mscroggs.co.uk
mscroggs.co.uk
Click here to win prizes by solving the mscroggs.co.uk puzzle Advent calendar.
Click here to win prizes by solving the mscroggs.co.uk puzzle Advent calendar.

subscribe

Puzzles

Subsum

1) In a set of three integers, will there always be two integers whose sum is even?
2) How many integers must there be in a set so that there will always be three integers in the set whose sum is a multiple of 3?
3) How many integers must there be in a set so that there will always be four integers in the set whose sum is even?
4) How many integers must there be in a set so that there will always be three integers in the set whose sum is even?

Show answer & extension

More doubling cribbage

Source: Inspired by Math Puzzle of the Week blog
Brendan and Adam are playing lots more games of high stakes cribbage: whoever loses each game must double the other players money. For example, if Brendan has £3 and Adam has £4 then Brendan wins, they will have £6 and £1 respectively.
In each game, the player who has the least money wins.
Brendan and Adam notice that for some amounts of starting money, the games end with one player having all the money; but for other amounts, the games continue forever.
For which amounts of starting money will the games end with one player having all the money?

Show answer & extension

Doubling cribbage

Brendan and Adam are playing high stakes cribbage: whoever loses each game must double the other players money. For example, if Brendan has £3 and Adam has £4 then Brendan wins, they will have £6 and £1 respectively.
Adam wins the first game then loses the second game. They then notice that they each have £180. How much did each player start with?

Show answer & extension

Two semicircles

The diagram shows two semicircles.
\(CD\) is a chord of the larger circle and is parallel to \(AB\). The length of \(CD\) is 8m. What is the area of the shaded region (in terms of \(\pi\))?

Show answer & extension

What is the sum?

What is \(\displaystyle\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{15}+\sqrt{16}}\)?

Show answer

Between quadratics

Source: Luciano Rila (@DrTrapezio)
\(p(x)\) is a quadratic polynomial with real coefficients. For all real numbers \(x\),
$$x^2-2x+2\leq p(x)\leq 2x^2-4x+3$$
\(p(11)=181\). Find \(p(16)\).

Show answer

24 December

Today's number is the largest possible remainder which can be obtained when dividing one of the answers in this advent calendar by another answer smaller than it (not including today's answer!).

23 December

This number is a prime number. If you treble it and add 16, the result is also prime. Repeating this will give 11 prime numbers in total (including the number itself).

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2023

Advent calendar 2022

Advent calendar 2021

Advent calendar 2020


List of all puzzles

Tags

functions integers polygons multiplication planes arrows spheres 3d shapes geometry averages triangles money integration coordinates shapes regular shapes lines 2d shapes graphs circles angles trigonometry chess geometric means elections quadrilaterals ellipses number geometric mean folding tube maps coins dominos pentagons chocolate axes advent surds cubics cards logic people maths median addition square roots tiling palindromes partitions remainders scales rugby consecutive numbers bases combinatorics factors square numbers games sequences volume odd numbers ave symmetry complex numbers calculus floors probability tournaments grids dice time expansions differentiation consecutive integers crossnumber perfect numbers pascal's triangle crossnumbers squares parabolas clocks indices cryptic crossnumbers speed perimeter numbers matrices digital clocks digital products products unit fractions sport taxicab geometry area routes dates chalkdust crossnumber doubling rectangles irreducible numbers percentages gerrymandering tangents christmas determinants mean cryptic clues algebra means hexagons range the only crossnumber sets wordplay shape albgebra binary even numbers fractions quadratics factorials dodecagons colouring digits sums books sum to infinity balancing division menace probabilty triangle numbers polynomials star numbers proportion crosswords cube numbers decahedra prime numbers multiples

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2024