mscroggs.co.uk
mscroggs.co.uk

subscribe

Puzzles

Is it equilateral?

In the diagram below, \(ABDC\) is a square. Angles \(ACE\) and \(BDE\) are both 75°.
Is triangle \(ABE\) equilateral? Why/why not?

Show answer

Cube multiples

Six different (strictly) positive integers are written on the faces of a cube. The sum of the numbers on any two adjacent faces is a multiple of 6.
What is the smallest possible sum of the six numbers?

Show answer & extension

Advent 2017 logic puzzle

2017's Advent calendar ended with a logic puzzle: It's nearly Christmas and something terrible has happened: Santa and his two elves have been cursed! The curse has led Santa to forget which present three children—Alex, Ben and Carol—want and where they live.
The elves can still remember everything about Alex, Ben and Carol, but the curse is causing them to lie. One of the elves will lie on even numbered days and tell the truth on odd numbered days; the other elf will lie on odd numbered days and tell the truth on even numbered days. As is common in elf culture, each elf wears the same coloured clothes every day.
Each child lives in a different place and wants a different present. (But a present may be equal to a home.) The homes and presents are each represented by a number from 1 to 9.
Here are the clues:
21
White shirt says: "Yesterday's elf lied: Carol wants 4, 9 or 6."
10
Orange hat says: "249 is my favourite number."
5
Red shoes says: "Alex lives at 1, 9 or 6."
16
Blue shoes says: "I'm the same elf as yesterday. Ben wants 5, 7 or 0."
23
Red shoes says: "Carol wants a factor of 120. I am yesterday's elf."
4
Blue shoes says: "495 is my favourite number."
15
Blue shoes says: "Carol lives at 9, 6 or 8."
22
Purple trousers says: "Carol wants a factor of 294."
11
White shirt says: "497 is my favourite number."
6
Pink shirt says: "Ben does not live at the last digit of 106."
9
Blue shoes says: "Ben lives at 5, 1 or 2."
20
Orange hat says: "Carol wants the first digit of 233."
1
Red shoes says: "Alex wants 1, 2 or 3."
24
Green hat says: "The product of the six final presents and homes is 960."
17
Grey trousers says: "Alex wants the first digit of 194."
14
Pink shirt says: "One child lives at the first digit of 819."
3
White shirt says: "Alex lives at 2, 1 or 6."
18
Green hat says: "Ben wants 1, 5 or 4."
7
Green hat says: "Ben lives at 3, 4 or 3."
12
Grey trousers says: "Alex lives at 3, 1 or 5."
19
Purple trousers says: "Carol lives at 2, 6 or 8."
8
Red shoes says: "The digits of 529 are the toys the children want."
13
Green hat says: "One child lives at the first digit of 755."
2
Red shoes says: "Alex wants 1, 4 or 2."

Show answer

24 December

Today's number is the smallest number with exactly 28 factors (including 1 and the number itself as factors).

Show answer

23 December

In the song The Twelve Days of Christmas, how many presents have been given after 8 days?

22 December

22 is two times an odd number. Today's number is the mean of all the answers on days (including today) that are two times an odd number.
Clarification: You are taking the mean for answers on days that are two times an odd numbers; ie. the days are two times odd, not the answers.

21 December

The factors of 6 (excluding 6 itself) are 1, 2 and 3. \(1+2+3=6\), so 6 is a perfect number.
Today's number is the only three digit perfect number.

20 December

What is the largest number that cannot be written in the form \(10a+27b\), where \(a\) and \(b\) are nonnegative integers (ie \(a\) and \(b\) can be 0, 1, 2, 3, ...)?

Show answer & extension

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2024

Advent calendar 2023

Advent calendar 2022

Advent calendar 2021


List of all puzzles

Tags

lines people maths neighbours bases the only crossnumber palindromes digital clocks functions means cards complex numbers chess factorials quadratics triangles cube numbers addition crossnumber elections indices books odd numbers clocks sums square roots irreducible numbers cryptic crossnumbers polynomials geometric mean unit fractions partitions multiples trigonometry crossnumbers volume consecutive numbers symmetry dice taxicab geometry integration calculus shapes geometry ellipses colouring albgebra perfect numbers christmas powers geometric means factors menace consecutive integers surds chocolate wordplay fractions range number floors 3d shapes hexagons determinants planes doubling pascal's triangle logic spheres 2d shapes grids division tangents folding tube maps triangle numbers sets dodecagons dominos medians combinatorics digits tiling algebra balancing expansions proportion sequences games square grids arrows speed coins matrices crosswords rectangles tournaments probabilty differentiation pentagons rugby decahedra sport regular shapes polygons prime numbers products probability remainders gerrymandering even numbers quadrilaterals star numbers percentages square numbers squares mean coordinates chalkdust crossnumber cubics numbers digital products routes scales binary perimeter axes dates time money integers sum to infinity averages median ave shape angles area parabolas advent graphs multiplication cryptic clues circles numbers grids

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2025