mscroggs.co.uk
mscroggs.co.uk
Click here to win prizes by solving the mscroggs.co.uk puzzle Advent calendar.
Click here to win prizes by solving the mscroggs.co.uk puzzle Advent calendar.

subscribe

Puzzles

1 December

If you write out the numbers from 1 to 1000 (inclusive), how many times will you write the digit 1?

Show answer

Not Roman numerals

The letters \(I\), \(V\) and \(X\) each represent a different digit from 1 to 9. If
$$VI\times X=VVV,$$
what are \(I\), \(V\) and \(X\)?

Show answer

24 December

1,0,2,0,1,1
The sequence of six numbers above has two properties:
  1. Each number is either 0, 1 or 2.
  2. Each pair of consecutive numbers adds to (strictly) less than 3.
Today's number is the number of sequences of six numbers with these two properties
Tags: numbers

22 December

In base 2, 1/24 is 0.0000101010101010101010101010...
In base 3, 1/24 is 0.0010101010101010101010101010...
In base 4, 1/24 is 0.0022222222222222222222222222...
In base 5, 1/24 is 0.0101010101010101010101010101...
In base 6, 1/24 is 0.013.
Therefore base 6 is the lowest base in which 1/24 has a finite number of digits.
Today's number is the smallest base in which 1/10890 has a finite number of digits.
Note: 1/24 always represents 1 divided by twenty-four (ie the 24 is written in decimal).

Show answer

21 December

Put the digits 1 to 9 (using each digit exactly once) in the boxes so that the sums are correct. The sums should be read left to right and top to bottom ignoring the usual order of operations. For example, 4+3×2 is 14, not 10. Today's number is the smallest number you can make using the digits in the red boxes.
+÷= 2
× + -
×-= 31
+ + -
-×= 42
=
37
=
13
=
-2

Show answer

Tags: numbers, grids

20 December

Today's number is the sum of all the numbers less than 40 that are not factors of 40.

17 December

For \(x\) and \(y\) between 1 and 9 (including 1 and 9), I write a number at the co-ordinate \((x,y)\): if \(x\lt y\), I write \(x\); if not, I write \(y\).
Today's number is the sum of the 81 numbers that I have written.

Show answer

Tags: numbers

16 December

Arrange the digits 1-9 in a 3×3 square so that the first row makes a triangle number, the second row's digits are all even, the third row's digits are all odd; the first column makes a square number, and the second column makes a cube number. The number in the third column is today's number.
triangle
all digits even
all digits odd
squarecubetoday's number

Show answer

Tags: numbers, grids

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2023

Advent calendar 2022

Advent calendar 2021

Advent calendar 2020


List of all puzzles

Tags

multiples probability sport area albgebra graphs star numbers cryptic clues chalkdust crossnumber quadratics cubics doubling advent coins ave quadrilaterals speed volume cube numbers elections chocolate coordinates tangents trigonometry christmas binary games bases circles differentiation surds time combinatorics consecutive numbers algebra floors complex numbers mean polynomials dates factorials factors fractions grids multiplication sets parabolas dice logic geometric mean prime numbers probabilty money squares regular shapes hexagons 3d shapes remainders dominos functions means digital products geometry pentagons expansions averages crossnumber cryptic crossnumbers decahedra clocks number menace matrices digits numbers symmetry products colouring rugby people maths gerrymandering perfect numbers sums crosswords spheres digital clocks irreducible numbers shapes sequences rectangles polygons integers even numbers scales percentages geometric means unit fractions chess taxicab geometry proportion folding tube maps sum to infinity balancing division cards pascal's triangle odd numbers ellipses the only crossnumber crossnumbers square roots lines dodecagons determinants partitions square numbers planes axes perimeter wordplay routes addition triangle numbers indices integration angles tiling books shape 2d shapes tournaments range calculus arrows palindromes consecutive integers median triangles

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2024