mscroggs.co.uk
mscroggs.co.uk

subscribe

Puzzles

15 December

When talking to someone about this Advent calendar, you told them that the combination of XMAS and MATHS is GREAT. They were American, so asked you if the combination of XMAS and MATH is great; you said SURE. You asked them their name; they said SAM.
Each of the letters E, X, M, A, T, H, S, R, U, and G stands for a different digit 0 to 9. The following sums are correct:
Today's number is SAM. To help you get started, the letter T represents 4.

Show answer

14 December

The numbers 33, 404 and 311 contain duplicate digits. The numbers 120, 15 and 312 do not.
How many numbers between 10 and 999 (inclusive) contain no duplicate digits?

Show answer

13 December

There are 6 ways to split the sequence of the numbers 1 to 5 into three shorter sequences:
Today's number is the number of ways to split the sequence of the numbers 1 to 10 into five shorter sequences.

Show answer

12 December

The diagram to the left shows a large black square. Inside this square, two red squares have been drawn. (The sides of the red squares are parallel to the sides of the black square; each red square shares a vertex with the black square; and the two red squares share a vertex.) A blue quadrilateral has then been drawn with vertices at two corners of the black square and the centres of the red squares.
The area of the blue quadrilateral is 167. What is the area of the black square?

Show answer

11 December

Noel has a large pile of cards. Half of them are red, the other half are black. Noel splits the cards into two piles: pile A and pile B.
Two thirds of the cards in pile A are red. Noel then moves 108 red cards from pile A to pile B. After this move, two thirds of the cards in pile B are red.
How many cards did Noel start with?
Note: There was a mistake in the original version of today's puzzle. The number 21 has been replaced with 108.

Show answer

10 December

Today's number is the smallest multiple of 24 whose digits add up to 24.

Show answer

9 December

Put the digits 1 to 9 (using each digit exactly once) in the boxes so that the sums are correct. The sums should be read left to right and top to bottom ignoring the usual order of operations. For example, 4+3×2 is 14, not 10. Today's number is the product of the numbers in the red boxes.
+×= 54
× + ÷
-÷= 1
÷ - ×
+-= 6
=
18
=
6
=
18

Show answer

Tags: numbers, grids

8 December

The residents of Octingham have 8 fingers. Instead of counting in base ten, they count in base eight: the digits of their numbers represent ones, eights, sixty-fours, two-hundred-and-fifty-sixes, etc instead of ones, tens, hundreds, thousands, etc.
For example, a residents of Octingham would say 12, 22 and 52 instead of our usual numbers 10, 18 and 42.
Today's number is what a resident of Octingham would call 11 squared (where the 11 is also written using the Octingham number system).

Show answer

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2023

Advent calendar 2022

Advent calendar 2021

Advent calendar 2020


List of all puzzles

Tags

matrices geometric means cryptic clues fractions circles wordplay speed binary decahedra triangles surds crosswords odd numbers complex numbers expansions ellipses advent folding tube maps dice square roots pascal's triangle palindromes quadratics factorials perfect numbers algebra scales gerrymandering rugby arrows time volume hexagons tournaments bases indices consecutive numbers square numbers geometric mean partitions colouring shape chalkdust crossnumber crossnumbers dates cube numbers symmetry elections menace calculus consecutive integers balancing addition squares routes averages logic differentiation multiples number trigonometry even numbers percentages cards games products quadrilaterals 3d shapes mean people maths crossnumber tiling albgebra cryptic crossnumbers grids digital products remainders probability sums pentagons combinatorics rectangles books polygons proportion multiplication floors the only crossnumber coins polynomials geometry shapes perimeter planes chocolate angles functions irreducible numbers sum to infinity tangents area parabolas sets integers digital clocks factors spheres doubling division median christmas graphs unit fractions dominos cubics triangle numbers clocks coordinates 2d shapes taxicab geometry sequences probabilty regular shapes means lines digits range dodecagons prime numbers ave money integration numbers star numbers determinants chess axes sport

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2024