mscroggs.co.uk
mscroggs.co.uk
Click here to win prizes by solving the mscroggs.co.uk puzzle Advent calendar.
Click here to win prizes by solving the mscroggs.co.uk puzzle Advent calendar.

subscribe

Puzzles

7 December

There are 15 dominos that can be made using the numbers 0 to 4 (inclusive):
The sum of all the numbers on all these dominos is 60.
Today's number is the sum of all the numbers on all the dominos that can be made using the numbers 5 to 10 (inclusive).

Show answer

6 December

There are 12 ways of placing 2 tokens on a 2×4 grid so that no two tokens are next to each other horizonally, vertically or diagonally:
Today's number is the number of ways of placing 5 tokens on a 2×10 grid so that no two tokens are next to each other horizonally, vertically or diagonally.

Show answer

5 December

Carol rolled a large handful of six-sided dice. The total of all the numbers Carol got was 521. After some calculating, Carol worked out that the probability that of her total being 521 was the same as the probability that her total being 200. How many dice did Carol roll?

Show answer

4 December

Today's number is a three digit number which is equal to the sum of the cubes of its digits. One less than today's number also has this property.

Show answer

3 December

Put the digits 1 to 9 (using each digit exactly once) in the boxes so that the sums are correct. The sums should be read left to right and top to bottom ignoring the usual order of operations. For example, 4+3×2 is 14, not 10. Today's number is the largest number you can make with the digits in the red boxes.
÷-= 3
+ + ÷
÷×= 1
× - +
-×= 20
=
91
=
6
=
8

Show answer

Tags: numbers, grids

2 December

Carol draws a square with area 62. She then draws the smallest possible circle that this square is contained inside. Next, she draws the smallest possible square that her circle is contained inside. What is the area of her second square?

Show answer

1 December

It is possible to write 325 different numbers using the digits 1, 2, 3, 4, and 5 at most once each (and using no other digits). How many of these numbers are odd?

Show answer

Advent 2019 logic puzzle

It's nearly Christmas and something terrible has happened: while out on a test flight, Santa's sled was damaged and Santa, Rudolph and Blitzen fell to the ground over the Advent Isles. You need to find Santa and his reindeer before Christmas is ruined for everyone.
You have gathered one inhabitant of the four largest Advent Isles—Rum, Land, Moon and County—and they are going to give you a series of clues about where Santa and his reindeer landed. However, one or more of the islanders you have gathered may have been involved in damaging Santa's sled and causing it to crash: any islander involved in this will lie to you to attempt to stop you from finding Santa and his reindeer. Once you are ready to search for Santa, Rudolph and Blitzen, you can find the map by following this link.
Each of the clues will be about Santa's, Rudolph's or Blitzen's positions in Advent Standard Coordinates (ASC): ASC are given by six two-digit numbers with dots inbetween, for example 12.52.12.13.84.55. For this example coordinate, the islanders will refer to (the first) 12 as the first coordinate, 52 as the second coordinate, (the second) 12 as the third coordinate, 13 as the fourth coordinate, 84 as the fifth coordinate, and 55 as the sixth coordinate.
Here are the clues:
3
Rum says: "The product of all the digits in Blitzen's six coords is 432."
21
Moon says: "Blitzen's fifth coord is 23."
9
Moon says: "Blitzen's third coord is 23."
1
Land says: "Santa's third coord ends in 3, 0 or 1."
2
Land says: "Santa's third coord ends in 2, 0 or 3."
4
Rum says: "Santa's second coord ends in 3, 4 or 1."
12
Rum says: "Rudolph's second and sixth coords are both 64."
10
Rum says: "All six of Rudolph's coords are factors of 256."
18
Moon says: "Santa's fourth and fifth coords are both 79."
24
County says: "Santa's third coord ends in 3, 2 or 1."
22
Land says: "Santa's sixth coord is not 43."
7
Rum says: "Santa's sixth coord is 43."
23
County says: "One of the digits of Santa's third coord is 7."
25
14
Land says: "Santa's third coord is 12."
5
Rum says: "Santa's first coord is 36."
15
Rum says: "Blitzen's first coord is 23."
17
Rum says: "The first digit of Santa's third coord is 1."
8
County says: "Santa's third coord shares a factor (≠1) with 270."
6
County says: "Santa's second coord is 21."
16
Land says: "Blitzen's second coord is 21."
20
Moon says: "All six of Rudolph's coords are multiples of 8."
11
Moon says: "The sum of Rudolph's six coords is 192."
13
Moon says: "Santa's second coord is 21 or 11."
19
Moon says: "Blitzen's fourth and sixth coords are both 11."
To find a point's ASC coordinates, split a map of the islands into a 9×9 grid, then number the rows and columns 1 to 9: the first two digits of ASC give the vertical then horizontal position of a square in this grid. The next two digits then give a smaller square when this square is then itself split into a 9×9 grid, and so on. An example is show below.
The ASC coordinates of this pair of flowers are 12.52.12.13.84.55 (click to enlarge).
You can view the map here.

Show answer

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2023

Advent calendar 2022

Advent calendar 2021

Advent calendar 2020


List of all puzzles

Tags

matrices products hexagons digits circles shapes differentiation coins square roots dates tangents sums speed partitions the only crossnumber indices consecutive numbers area number tournaments geometric mean star numbers complex numbers cryptic clues polygons determinants menace triangle numbers regular shapes chalkdust crossnumber dice unit fractions pentagons planes parabolas digital products axes factorials factors sets doubling odd numbers lines integration quadrilaterals palindromes perfect numbers spheres clocks dominos scales tiling routes multiplication integers albgebra pascal's triangle cube numbers colouring money calculus geometric means people maths christmas remainders grids sequences addition taxicab geometry books shape ave graphs gerrymandering combinatorics averages range digital clocks surds rectangles crossnumber probabilty volume ellipses sport logic means binary symmetry balancing probability cards algebra square numbers chess elections numbers irreducible numbers dodecagons fractions multiples median wordplay 3d shapes 2d shapes percentages quadratics polynomials consecutive integers proportion mean chocolate cubics games crossnumbers even numbers expansions arrows division folding tube maps rugby crosswords angles trigonometry sum to infinity squares advent floors coordinates prime numbers bases perimeter triangles functions decahedra cryptic crossnumbers geometry time

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2024