mscroggs.co.uk
mscroggs.co.uk

subscribe

Puzzles

23 December

I draw the parabola \(y=x^2\) and mark points on the parabola at \(x=17\) and \(x=-6\). I then draw a straight line connecting these two points.
At which value of \(y\) does this line intercept the \(y\)-axis?

Show answer

22 December

There are 12 ways of placing 2 tokens on a 2×4 grid so that no two tokens are next to each other horizontally, vertically or diagonally:
Today's number is the number of ways of placing 2 tokens on a 2×21 grid so that no two tokens are next to each other horizontally, vertically or diagonally.

Show answer

21 December

Arrange the digits 1–9 (using each digit exactly once) so that the three digit number in: the middle row is a prime number; the bottom row is a square number; the left column is a cube number; the middle column is an odd number; the right column is a multiple of 11. The 3-digit number in the first row is today's number.
today's number
prime
square
cubeoddmultiple of 11

Show answer

20 December

What is the area of the largest area triangle that has one side of length 32 and one side of length 19?

Show answer

19 December

The equation \(352x^3-528x^2+90=0\) has three distinct real-valued solutions.
Today's number is the number of integers \(a\) such that the equation \(352x^3-528x^2+a=0\) has three distinct real-valued solutions.

Show answer

Tags: graphs, cubics

18 December

Put the digits 1 to 9 (using each digit exactly once) in the boxes so that the sums are correct. The sums should be read left to right and top to bottom ignoring the usual order of operations. For example, 4+3×2 is 14, not 10. Today's number is the product of the numbers in the red boxes.
++= 11
+ × ×
++= 17
× - +
++= 17
=
11
=
17
=
17

Show answer

Tags: numbers, grids

17 December

The digital product of a number is computed by multiplying together all of its digits. For example, the digital product of 6273 is 252.
Today's number is the smallest number whose digital product is 252.

Show answer

16 December

Each clue in this crossnumber is formed of two parts connected by a logical connective: and means that both parts are true; nand means that at most one part is true; or means that at least one part is true; nor means that neither part is true; xor means that exactly one part is true; xnor means that either both parts are false or both parts are true. No number starts with 0.

Show answer

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2024

Advent calendar 2023

Advent calendar 2022

Advent calendar 2021


List of all puzzles

Tags

dodecagons partitions regular shapes consecutive numbers chalkdust crossnumber squares time dice albgebra even numbers doubling binary routes area cryptic crossnumbers pentagons probability geometric means circles cubics division scales 3d shapes probabilty perfect numbers irreducible numbers median addition algebra lines dates proportion balancing cryptic clues geometry range shapes digital products means menace sequences arrows pascal's triangle speed determinants factorials quadrilaterals medians spheres hexagons consecutive integers bases averages polygons polynomials money sets powers planes surds matrices products books digits coordinates cube numbers neighbours digital clocks gerrymandering floors shape square numbers palindromes christmas ellipses odd numbers chocolate advent parabolas functions factors unit fractions clocks differentiation percentages quadratics sum to infinity ave calculus triangles numbers grids wordplay square roots square grids graphs sport fractions star numbers chess grids multiplication perimeter tangents coins angles mean dominos integers decahedra rugby rectangles indices crossnumbers geometric mean volume tournaments multiples number remainders elections games cards taxicab geometry sums axes tiling crosswords triangle numbers logic integration people maths the only crossnumber complex numbers symmetry trigonometry folding tube maps numbers expansions colouring 2d shapes combinatorics prime numbers

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2025