mscroggs.co.uk
mscroggs.co.uk

subscribe

Puzzles

6 December

There are 21 three-digit integers whose digits are all non-zero and whose digits add up to 8.
How many positive integers are there whose digits are all non-zero and whose digits add up to 8?

Show answer & extension

5 December

Put the digits 1 to 9 (using each digit exactly once) in the boxes so that the sums are correct. The sums should be read left to right and top to bottom ignoring the usual order of operations. For example, 4+3×2 is 14, not 10. Today's number is the product of the numbers in the red boxes.
×÷= 15
+ + +
×÷= 14
×÷= 27
=
9
=
5
=
5

Show answer

Tags: numbers, grids

4 December

The last three digits of \(5^5\) are 125.
What are the last three digits of \(5^{2,022,000,000}\)?

Show answer

3 December

Write the numbers 1 to 81 in a grid like this:
$$ \begin{array}{cccc} 1&2&3&\cdots&9\\ 10&11&12&\cdots&18\\ 19&20&21&\cdots&27\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ 73&74&75&\cdots&81 \end{array} $$
Pick 9 numbers so that you have exactly one number in each row and one number in each column, and find their sum. What is the largest value you can get?

Show answer

2 December

What is the smallest number that is a multiple of 1, 2, 3, 4, 5, 6, 7, and 8?

Show answer

1 December

One of the vertices of a rectangle is at the point \((9, 0)\). The \(x\)-axis and \(y\)-axis are both lines of symmetry of the rectangle.
What is the area of the rectangle?

Show answer

Advent 2021 logic puzzle

It's nearly Christmas and something terrible has happened: a saboteur has infiltrated the stables where Santa's reindeer are kept, and has caused all three of Santa's test flights to be unsuccessful. You need to help Santa have a successful test flight so that he can deliver presents before Christmas is ruined for everyone.
In order to have enough magical power to fly with the sleigh, all nine of Santa's reindeer must be fed their favourite food. The saboteur gave one or more reindeer the wrong food before each of the three test flights, causing the reindeer to be unable to take off.
In each clue, "before test flight n" means "immediately before test flight n". Before each test flight, each reindeer was fed exactly one food, and two or more reindeer may have been fed the same food. Two or more reindeer may have the same favourite food. You must use these clues to work out what each reindeer's favourite food is, then complete a test flight by feeding each reindeer the correct food.
You can attempt a test flight here.

Show answer

24 December

The digital product of a number is computed by multiplying together all of its digits. For example, the digital product of 1522 is 20.
How many 12-digit numbers are there whose digital product is 20?

Show answer

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2024

Advent calendar 2023

Advent calendar 2022

Advent calendar 2021


List of all puzzles

Tags

tiling angles games surds percentages number polynomials cards scales planes integers matrices chalkdust crossnumber advent consecutive integers averages arrows coins squares colouring graphs median menace cryptic clues dice regular shapes geometric mean proportion medians parabolas cubics doubling tangents star numbers division lines clocks consecutive numbers spheres range trigonometry sets numbers grids routes means square grids ellipses geometry sums geometric means fractions people maths square roots perfect numbers area crosswords even numbers coordinates axes factorials 3d shapes algebra quadratics products bases mean binary pentagons remainders circles polygons complex numbers ave square numbers dates sum to infinity elections probability wordplay hexagons numbers books crossnumbers floors calculus logic chocolate quadrilaterals digital clocks sequences neighbours perimeter pascal's triangle the only crossnumber rugby differentiation prime numbers integration cryptic crossnumbers volume chess odd numbers shapes powers sport 2d shapes decahedra unit fractions expansions palindromes cube numbers rectangles tournaments combinatorics time gerrymandering addition factors shape triangle numbers probabilty indices triangles dodecagons determinants speed digits multiplication multiples folding tube maps balancing grids irreducible numbers taxicab geometry albgebra dominos digital products partitions symmetry christmas money functions

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2025