mscroggs.co.uk
mscroggs.co.uk
Click here to win prizes by solving the mscroggs.co.uk puzzle Advent calendar.
Click here to win prizes by solving the mscroggs.co.uk puzzle Advent calendar.

subscribe

Puzzles

13 December

Today's number is given in this crossnumber. The across clues are given as normal, but the down clues are given in a random order: you must work out which clue goes with each down entry and solve the crossnumber to find today's number. No number in the completed grid starts with 0.

Show answer

12 December

The determinant of the 2 by 2 matrix \(\begin{pmatrix}a&b\\c&d\end{pmatrix}\) is \(ad-bc\).
If a 2 by 2 matrix's entries are all in the set \(\{1, 2, 3\}\), the largest possible deteminant of this matrix is 8.
What is the largest possible determinant of a 2 by 2 matrix whose entries are all in the set \(\{1, 2, 3, ..., 12\}\)?

Show answer & extension

11 December

There are five 3-digit numbers whose digits are all either 1 or 2 and who do not contain two 2s in a row: 111, 112, 121, 211, and 212.
How many 14-digit numbers are there whose digits are all either 1 or 2 and who do not contain two 2s in a row?

Show answer

10 December

A line is tangent to a curve if the line touches the curve at exactly one point.
The line \(y=-160\,000\) is tangent to the parabola \(y=x^2-ax\). What is \(a\)?

Show answer

9 December

Put the digits 1 to 9 (using each digit exactly once) in the boxes so that the sums are correct. The sums should be read left to right and top to bottom ignoring the usual order of operations. For example, 4+3×2 is 14, not 10. Today's number is the largest number you can make with the digits in the red boxes.
++= 20
+ + ÷
+= 0
+ ×
÷×= 12
=
22
=
6
=
2

Show answer

Tags: numbers, grids

8 December

The equation \(x^5 - 7x^4 - 27x^3 + 175x^2 + 218x = 840\) has five real solutions. What is the product of all these solutions?

Show answer & extension

7 December

What is the area of the largest triangle that fits inside a regular hexagon with area 952?

Show answer

6 December

There are 21 three-digit integers whose digits are all non-zero and whose digits add up to 8.
How many positive integers are there whose digits are all non-zero and whose digits add up to 8?

Show answer & extension

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2023

Advent calendar 2022

Advent calendar 2021

Advent calendar 2020


List of all puzzles

Tags

speed dominos doubling routes advent cryptic clues regular shapes perfect numbers products planes prime numbers addition squares sums geometry consecutive numbers quadratics triangle numbers lines elections cubics cube numbers partitions dice triangles consecutive integers combinatorics calculus angles means decahedra integers balancing polynomials perimeter menace coins range quadrilaterals 3d shapes binary coordinates probabilty pentagons surds money the only crossnumber division trigonometry clocks books complex numbers fractions tiling square roots star numbers area multiples symmetry circles matrices axes factors dates albgebra christmas wordplay unit fractions odd numbers integration graphs floors differentiation proportion chocolate indices folding tube maps scales percentages probability square numbers ave number crossnumber logic rectangles sport sum to infinity volume palindromes hexagons 2d shapes irreducible numbers geometric means digits functions colouring shape even numbers algebra grids rugby shapes mean median sets pascal's triangle bases digital clocks sequences geometric mean gerrymandering chalkdust crossnumber spheres crossnumbers digital products factorials tournaments people maths numbers multiplication crosswords games determinants expansions taxicab geometry remainders cards chess ellipses dodecagons parabolas polygons tangents time cryptic crossnumbers averages arrows

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2024