mscroggs.co.uk
mscroggs.co.uk
Click here to win prizes by solving the mscroggs.co.uk puzzle Advent calendar.
Click here to win prizes by solving the mscroggs.co.uk puzzle Advent calendar.

subscribe

Puzzles

13 December

Today's number is given in this crossnumber. The across clues are given as normal, but the down clues are given in a random order: you must work out which clue goes with each down entry and solve the crossnumber to find today's number. No number in the completed grid starts with 0.

Show answer

12 December

The determinant of the 2 by 2 matrix \(\begin{pmatrix}a&b\\c&d\end{pmatrix}\) is \(ad-bc\).
If a 2 by 2 matrix's entries are all in the set \(\{1, 2, 3\}\), the largest possible deteminant of this matrix is 8.
What is the largest possible determinant of a 2 by 2 matrix whose entries are all in the set \(\{1, 2, 3, ..., 12\}\)?

Show answer & extension

11 December

There are five 3-digit numbers whose digits are all either 1 or 2 and who do not contain two 2s in a row: 111, 112, 121, 211, and 212.
How many 14-digit numbers are there whose digits are all either 1 or 2 and who do not contain two 2s in a row?

Show answer

10 December

A line is tangent to a curve if the line touches the curve at exactly one point.
The line \(y=-160\,000\) is tangent to the parabola \(y=x^2-ax\). What is \(a\)?

Show answer

9 December

Put the digits 1 to 9 (using each digit exactly once) in the boxes so that the sums are correct. The sums should be read left to right and top to bottom ignoring the usual order of operations. For example, 4+3×2 is 14, not 10. Today's number is the largest number you can make with the digits in the red boxes.
++= 20
+ + ÷
+= 0
+ ×
÷×= 12
=
22
=
6
=
2

Show answer

Tags: numbers, grids

8 December

The equation \(x^5 - 7x^4 - 27x^3 + 175x^2 + 218x = 840\) has five real solutions. What is the product of all these solutions?

Show answer & extension

7 December

What is the area of the largest triangle that fits inside a regular hexagon with area 952?

Show answer

6 December

There are 21 three-digit integers whose digits are all non-zero and whose digits add up to 8.
How many positive integers are there whose digits are all non-zero and whose digits add up to 8?

Show answer & extension

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2023

Advent calendar 2022

Advent calendar 2021

Advent calendar 2020


List of all puzzles

Tags

regular shapes shape sport odd numbers probabilty axes circles multiples cube numbers mean indices consecutive integers polygons money surds people maths crossnumber percentages integers fractions squares graphs unit fractions dominos dice median partitions dodecagons decahedra pascal's triangle angles ellipses multiplication complex numbers coins star numbers determinants rectangles range menace products consecutive numbers crosswords polynomials routes parabolas perfect numbers differentiation probability factorials pentagons symmetry digital products remainders sequences hexagons number sum to infinity ave averages coordinates tournaments prime numbers speed cards sets folding tube maps means crossnumbers planes quadrilaterals area wordplay christmas time elections digital clocks doubling chess calculus addition clocks tangents spheres scales gerrymandering numbers logic geometric mean games colouring square roots tiling 2d shapes shapes irreducible numbers cubics combinatorics lines quadratics square numbers binary algebra the only crossnumber advent 3d shapes geometry expansions palindromes volume sums balancing taxicab geometry cryptic crossnumbers perimeter albgebra floors books triangles dates rugby integration functions chalkdust crossnumber digits trigonometry proportion arrows bases triangle numbers division grids chocolate matrices factors cryptic clues even numbers geometric means

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2024