mscroggs.co.uk
mscroggs.co.uk
Click here to win prizes by solving the mscroggs.co.uk puzzle Advent calendar.
Click here to win prizes by solving the mscroggs.co.uk puzzle Advent calendar.

subscribe

Puzzles

The blue-eyed sisters

If you happen to meet two of the Jones sister (two sisters chosen at random from all the Jones sisters), it is exactly an even-money bet that both will be blue-eyed. What is your best guess of the total number of Jones sisters?

Show answer & extension

1089

Take a three digit number. Reverse the digits then take the smaller number from the larger number.
Next add the answer to its reverse.
For example, if 175 is chosen:
$$571-175=396$$ $$396+693=1089$$
What numbers is it possible to obtain as an answer, and when will each be obtained?

Show answer & extension

Tags: numbers

Integrals

$$\int_0^1 1 dx = 1$$
Find \(a_1\) such that:
$$\int_0^{a_1} x dx = 1$$
Find \(a_2\) such that:
$$\int_0^{a_2} x^2 dx = 1$$
Find \(a_n\) such that (for \(n>0\)):
$$\int_0^{a_n} x^n dx = 1$$

Show answer & extension

Tetrahedral die

When a tetrahedral die is rolled, it will land with a point at the top: there is no upwards face on which the value of the roll can be printed. This is usually solved by printing three numbers on each face and the number which is at the bottom of the face is the value of the roll.
Is it possible to make a tetrahedral die with one number on each face such that the value of the roll can be calculated by adding up the three visible numbers? (the values of the four rolls must be 1, 2, 3 and 4)

Show answer & extension

Tags: dice

No change

"Give me change for a dollar, please," said the customer.
"I'm sorry," said the cashier, "but I can't do it with the coins I have. In fact, I can't change a half dollar, quarter, dime or nickel."
"Do you have any coins at all?" asked the customer.
"Oh yes," said the cashier, "I have $1.15 in coins."
Which coins are in the cash register?
(The available coins are 50¢, 25¢, 10¢ 5¢ and 1¢.)

Show answer & extension

Tags: money

Dirty work

Timothy, Urban, and Vincent are digging identical holes in a field.
When Timothy and Urban work together, they dig 1 hole in 4 days.
When Timothy and Vincent work together, they dig 1 hole in 3 days.
When Urban and Vincent work together, they dig 1 hole in 2 days.
Working alone, how long does it take Timothy to dig one hole?

Show answer & extension

Square in a triangle

Source: Maths Jam
A right-angled triangle has short sides of length \(a\) and \(b\). A square is drawn in the triangle so that two sides lie on the sides of the triangle and a corner lies on the hypotenuse.
What is the length of a side of the square?

Show answer & extension

Double derivative

What is
$$\frac{d}{dy}\left(\frac{dy}{dx}\right)$$
when:
(i) \(y=x\)
(ii) \(y=x^2\)
(iii) \(y=x^3\)
(iv) \(y=x^n\)
(v) \(y=e^x\)
(vi) \(y=\sin(x)\)?

Show answer & extension

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2023

Advent calendar 2022

Advent calendar 2021

Advent calendar 2020


List of all puzzles

Tags

numbers median folding tube maps square roots clocks square numbers advent indices albgebra geometric mean dodecagons gerrymandering doubling logic cubics polynomials pentagons number symmetry multiples area digital products cube numbers pascal's triangle division dominos mean functions cryptic crossnumbers products crossnumber scales regular shapes coordinates quadrilaterals probabilty algebra quadratics geometric means calculus colouring shapes elections partitions bases graphs trigonometry rectangles digits decahedra range matrices ave angles consecutive integers cards planes the only crossnumber balancing tiling axes menace integration tangents dates sum to infinity proportion circles determinants 2d shapes sums grids chess lines cryptic clues polygons parabolas triangles irreducible numbers sets crosswords ellipses speed surds 3d shapes christmas hexagons sport routes taxicab geometry binary digital clocks means star numbers odd numbers probability sequences people maths games complex numbers factorials rugby combinatorics floors multiplication geometry differentiation percentages tournaments expansions prime numbers fractions books dice squares time palindromes integers remainders coins factors money chalkdust crossnumber perimeter wordplay spheres chocolate averages even numbers shape addition triangle numbers perfect numbers unit fractions volume arrows consecutive numbers crossnumbers

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2024