mscroggs.co.uk
mscroggs.co.uk

subscribe

Puzzles

24 December

1,0,2,0,1,1
The sequence of six numbers above has two properties:
  1. Each number is either 0, 1 or 2.
  2. Each pair of consecutive numbers adds to (strictly) less than 3.
Today's number is the number of sequences of six numbers with these two properties
Tags: numbers

23 December

Today's number is the area of the largest area rectangle with perimeter 46 and whose sides are all integer length.

Show answer

22 December

In base 2, 1/24 is 0.0000101010101010101010101010...
In base 3, 1/24 is 0.0010101010101010101010101010...
In base 4, 1/24 is 0.0022222222222222222222222222...
In base 5, 1/24 is 0.0101010101010101010101010101...
In base 6, 1/24 is 0.013.
Therefore base 6 is the lowest base in which 1/24 has a finite number of digits.
Today's number is the smallest base in which 1/10890 has a finite number of digits.
Note: 1/24 always represents 1 divided by twenty-four (ie the 24 is written in decimal).

Show answer

21 December

Put the digits 1 to 9 (using each digit exactly once) in the boxes so that the sums are correct. The sums should be read left to right and top to bottom ignoring the usual order of operations. For example, 4+3×2 is 14, not 10. Today's number is the smallest number you can make using the digits in the red boxes.
+÷= 2
× + -
×-= 31
+ + -
-×= 42
=
37
=
13
=
-2

Show answer

Tags: numbers, grids

20 December

Today's number is the sum of all the numbers less than 40 that are not factors of 40.

19 December

Today's number is the number of 6-dimensional sides on a 8-dimensional hypercube.

Show answer

Tags: 3d shapes

18 December

There are 6 terms in the expansion of \((x+y+z)^2\):
$$(x+y+z)^2=x^2+y^2+z^2+2xy+2yz+2xz$$
Today's number is number of terms in the expansion of \((x+y+z)^{16}\).

Show answer

Tags: algebra

17 December

For \(x\) and \(y\) between 1 and 9 (including 1 and 9), I write a number at the co-ordinate \((x,y)\): if \(x\lt y\), I write \(x\); if not, I write \(y\).
Today's number is the sum of the 81 numbers that I have written.

Show answer

Tags: numbers

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2024

Advent calendar 2023

Advent calendar 2022

Advent calendar 2021


List of all puzzles

Tags

digital clocks surds circles triangle numbers quadrilaterals consecutive integers division colouring partitions sum to infinity 3d shapes games numbers grids sums menace geometry matrices integers advent tiling median pascal's triangle speed expansions dodecagons sport axes tournaments prime numbers square grids sets taxicab geometry rectangles consecutive numbers books tangents ellipses bases elections complex numbers numbers functions unit fractions chalkdust crossnumber decahedra floors hexagons dice proportion differentiation number spheres perfect numbers odd numbers doubling fractions even numbers percentages volume clocks cards digits rugby multiplication dominos chocolate routes geometric mean angles gerrymandering integration irreducible numbers albgebra logic parabolas cryptic clues palindromes mean ave medians wordplay products folding tube maps graphs digital products binary means 2d shapes square roots chess shapes factorials shape regular shapes neighbours crossnumber grids perimeter scales powers balancing multiples crosswords determinants remainders coordinates people maths dates area crossnumbers indices star numbers algebra combinatorics range pentagons sequences geometric means cubics probabilty averages time symmetry lines polynomials squares arrows square numbers christmas cryptic crossnumbers quadratics cube numbers factors money trigonometry addition probability planes polygons coins calculus triangles the only crossnumber

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2025