mscroggs.co.uk
mscroggs.co.uk

subscribe

Puzzles

Advent 2019 logic puzzle

It's nearly Christmas and something terrible has happened: while out on a test flight, Santa's sled was damaged and Santa, Rudolph and Blitzen fell to the ground over the Advent Isles. You need to find Santa and his reindeer before Christmas is ruined for everyone.
You have gathered one inhabitant of the four largest Advent Isles—Rum, Land, Moon and County—and they are going to give you a series of clues about where Santa and his reindeer landed. However, one or more of the islanders you have gathered may have been involved in damaging Santa's sled and causing it to crash: any islander involved in this will lie to you to attempt to stop you from finding Santa and his reindeer. Once you are ready to search for Santa, Rudolph and Blitzen, you can find the map by following this link.
Each of the clues will be about Santa's, Rudolph's or Blitzen's positions in Advent Standard Coordinates (ASC): ASC are given by six two-digit numbers with dots inbetween, for example 12.52.12.13.84.55. For this example coordinate, the islanders will refer to (the first) 12 as the first coordinate, 52 as the second coordinate, (the second) 12 as the third coordinate, 13 as the fourth coordinate, 84 as the fifth coordinate, and 55 as the sixth coordinate.
Here are the clues:
3
Rum says: "The product of all the digits in Blitzen's six coords is 432."
21
Moon says: "Blitzen's fifth coord is 23."
9
Moon says: "Blitzen's third coord is 23."
1
Land says: "Santa's third coord ends in 3, 0 or 1."
2
Land says: "Santa's third coord ends in 2, 0 or 3."
4
Rum says: "Santa's second coord ends in 3, 4 or 1."
12
Rum says: "Rudolph's second and sixth coords are both 64."
10
Rum says: "All six of Rudolph's coords are factors of 256."
18
Moon says: "Santa's fourth and fifth coords are both 79."
24
County says: "Santa's third coord ends in 3, 2 or 1."
22
Land says: "Santa's sixth coord is not 43."
7
Rum says: "Santa's sixth coord is 43."
23
County says: "One of the digits of Santa's third coord is 7."
25
14
Land says: "Santa's third coord is 12."
5
Rum says: "Santa's first coord is 36."
15
Rum says: "Blitzen's first coord is 23."
17
Rum says: "The first digit of Santa's third coord is 1."
8
County says: "Santa's third coord shares a factor (≠1) with 270."
6
County says: "Santa's second coord is 21."
16
Land says: "Blitzen's second coord is 21."
20
Moon says: "All six of Rudolph's coords are multiples of 8."
11
Moon says: "The sum of Rudolph's six coords is 192."
13
Moon says: "Santa's second coord is 21 or 11."
19
Moon says: "Blitzen's fourth and sixth coords are both 11."
To find a point's ASC coordinates, split a map of the islands into a 9×9 grid, then number the rows and columns 1 to 9: the first two digits of ASC give the vertical then horizontal position of a square in this grid. The next two digits then give a smaller square when this square is then itself split into a 9×9 grid, and so on. An example is show below.
The ASC coordinates of this pair of flowers are 12.52.12.13.84.55 (click to enlarge).
You can view the map here.

Show answer

24 December

There are six 3-digit numbers with the property that the sum of their digits is equal to the product of their digits. Today's number is the largest of these numbers.

Show answer

23 December

Arrange the digits 1-9 in a 3×3 square so the 3-digits numbers formed in the rows and columns are the types of numbers given at the ends of the rows and columns. The number in the first column is today's number.
a multiple of 4
a cube
a multiple of 3
today's numbera cubean odd number

Show answer

Tags: numbers, grids

22 December

In bases 3 to 9, the number 112 is: \(11011_3\), \(1300_4\), \(422_5\), \(304_6\), \(220_7\), \(160_8\), and \(134_9\). In bases 3, 4, 6, 8 and 9, these representations contain no digit 2.
There are two 3-digit numbers that contain no 2 in their representations in all the bases between 3 and 9 (inclusive). Today's number is the smaller of these two numbers.

Show answer

21 December

Put the digits 1 to 9 (using each digit exactly once) in the boxes so that the sums are correct. The sums should be read left to right and top to bottom ignoring the usual order of operations. For example, 4+3×2 is 14, not 10. Today's number is the smallest number you can make with the digits in the red boxes.
+-= 7
÷ - ÷
+÷= 8
× × ×
+-= 7
=
12
=
5
=
28

Show answer

Tags: numbers, grids

20 December

The integers from 2 to 14 (including 2 and 14) are written on 13 cards (one number per card). You and a friend take it in turns to take one of the numbers.
When you have both taken five numbers, you notice that the product of the numbers you have collected is equal to the product of the numbers that your friend has collected. What is the product of the numbers on the three cards that neither of you has taken?

Show answer

19 December

The diagram below shows three squares and five circles. The four smaller circles are all the same size, and the red square's vertices are the centres of these circles.
The area of the blue square is 14 units. What is the area of the red square?

Show answer

18 December

The final round of game show starts with £1,000,000. You and your opponent take it in turn to take any value between £1 and £900. At the end of the round, whoever takes the final pound gets to take the money they have collected home, while the other player leaves with nothing.
You get to take an amount first. How much money should you take to be certain that you will not go home with nothing?

Show answer

Tags: numbers, games

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2024

Advent calendar 2023

Advent calendar 2022

Advent calendar 2021


List of all puzzles

Tags

bases addition numbers grids wordplay rugby probabilty cubics people maths dodecagons irreducible numbers neighbours books spheres determinants ellipses expansions angles algebra binary sum to infinity cryptic crossnumbers taxicab geometry geometry matrices multiplication mean median folding tube maps 2d shapes chalkdust crossnumber decahedra numbers routes dice money advent lines cryptic clues axes hexagons range coins means 3d shapes integers circles differentiation shapes consecutive numbers dates number tangents sport star numbers factorials floors pascal's triangle clocks volume calculus square numbers digits triangles elections regular shapes scales powers partitions christmas shape products grids trigonometry percentages sets crossnumber functions area albgebra pentagons integration quadrilaterals square roots medians cards time fractions crossnumbers tiling consecutive integers palindromes crosswords arrows colouring polynomials digital clocks polygons tournaments surds odd numbers probability digital products averages planes speed chocolate prime numbers even numbers doubling coordinates sequences parabolas complex numbers square grids perimeter chess combinatorics quadratics the only crossnumber menace ave multiples rectangles games division sums graphs proportion indices triangle numbers balancing perfect numbers factors gerrymandering remainders symmetry geometric mean squares logic dominos unit fractions geometric means cube numbers

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2025