mscroggs.co.uk
mscroggs.co.uk
Click here to win prizes by solving the mscroggs.co.uk puzzle Advent calendar.
Click here to win prizes by solving the mscroggs.co.uk puzzle Advent calendar.

subscribe

Puzzles

16 December

Arrange the digits 1-9 in a 3×3 square so that: the median number in the first row is 6; the median number in the second row is 3; the mean of the numbers in the third row is 4; the mean of the numbers in the second column is 7; the range of the numbers in the third column is 2, The 3-digit number in the first column is today's number.
median 6
median 3
mean 4
today's numbermean 7range 2

Show answer

15 December

There are 5 ways to make 30 by multiplying positive integers (including the trivial way):
Today's number is the number of ways of making 30030 by multiplying.

Show answer

14 December

During one day, a digital clock shows times from 00:00 to 23:59. How many times during the day do the four digits shown on the clock add up to 14?

Show answer

13 December

Each clue in this crossnumber (except 5A) gives a property of that answer that is true of no other answer. For example: 7A is a multiple of 13; but 1A, 3A, 5A, 1D, 2D, 4D, and 6D are all not multiples of 13. No number starts with 0.

Show answer

12 December

For a general election, the Advent isles are split into 650 constituencies. In each constituency, exactly 99 people vote: everyone votes for one of the two main parties: the Rum party or the Land party. The party that receives the most votes in each constituency gets an MAP (Member of Advent Parliament) elected to parliament to represent that constituency.
In this year's election, exactly half of the 64350 total voters voted for the Rum party. What is the largest number of MAPs that the Rum party could have?

Show answer

11 December

Put the digits 1 to 9 (using each digit exactly once) in the boxes so that the sums are correct. The sums should be read left to right and top to bottom ignoring the usual order of operations. For example, 4+3×2 is 14, not 10. Today's number is the product of the red digits.
+÷= 2
+ ÷ ÷
÷÷= 3
÷ - ÷
÷÷= 1
=
2
=
1
=
1

Show answer

Tags: grids, numbers

10 December

For all values of \(x\), the function \(f(x)=ax+b\) satisfies
$$8x-8-x^2\leqslant f(x)\leqslant x^2.$$
What is \(f(65)\)?
Edit: The left-hand quadratic originally said \(8-8x-x^2\). This was a typo and has now been corrected.

Show answer

9 December

Arrange the digits 1-9 in a 3×3 square so that: all the digits in the first row are odd; all the digits in the second row are even; all the digits in the third row are multiples of 3; all the digits in the second column are (strictly) greater than 6; all the digits in the third column are non-prime. The number in the first column is today's number.
all odd
all even
all multiples of 3
today's numberall >6all non-prime

Show answer

Tags: numbers, grids

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2023

Advent calendar 2022

Advent calendar 2021

Advent calendar 2020


List of all puzzles

Tags

palindromes rugby multiplication remainders sums square roots ellipses doubling ave chess menace hexagons chalkdust crossnumber balancing routes proportion decahedra speed dice tiling crossnumbers symmetry functions odd numbers folding tube maps combinatorics geometry indices probabilty digital products determinants pascal's triangle logic probability prime numbers clocks tournaments dodecagons regular shapes floors matrices unit fractions factorials games rectangles perimeter chocolate cryptic clues scales geometric means division averages square numbers advent means bases integers sport polynomials lines triangle numbers calculus binary wordplay time squares quadratics grids planes crosswords the only crossnumber digital clocks gerrymandering graphs volume cards fractions taxicab geometry trigonometry range coins quadrilaterals cube numbers arrows number geometric mean money crossnumber algebra circles triangles area elections pentagons consecutive numbers coordinates factors even numbers multiples christmas expansions percentages parabolas integration perfect numbers tangents books sum to infinity angles partitions polygons people maths addition shape numbers digits dominos cryptic crossnumbers complex numbers colouring spheres axes consecutive integers albgebra mean surds median sequences sets dates differentiation 3d shapes products shapes irreducible numbers star numbers cubics 2d shapes

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2024