mscroggs.co.uk
mscroggs.co.uk

subscribe

Puzzles

20 December

18 can be written as the sum of 3 consecutive (strictly) positive integers: 5 + 6 + 7.
18 can also be written as the sum of 4 consecutive (strictly) positive integers: 3 + 4 + 5 + 6.
18 is in fact the smallest number that can be written as the sum of both 3 and 4 consecutive (strictly) positive integers.
Today's number is the smallest number that can be written as the sum of both 12 and 13 consecutive (strictly) positive integers.

Show answer

Tags: numbers, sums

19 December

The diagram to the right shows a triangle. Two of the sides of the triangle have been split into three pieces, with lines drawn from the opposite vertex. In total, the diagram now contains 27 triangles of any size.
Another triangle has two of its sides split into eight pieces, with lines drawn from the opposite vertex. How many triangles (of any size) would this create?

Show answer

18 December

The expansion of \((x+y+z)^3\) is
$$x^3 + y^3 + z^3 + 3x^2y + 3x^2z + 3xy^2 + 3y^2z + 3xz^2 + 3yz^2 + 6xyz.$$
This has 10 terms.
Today's number is the number of terms in the expansion of \((x+y+z)^{26}\).

Show answer

Tags: algebra

17 December

Put the digits 1 to 9 (using each digit exactly once) in the boxes so that the sums and product are correct. Today's number is the product of the numbers in the red boxes.
++= 16
+ + +
++= 8
+ + +
××= 288
=
11
=
14
=
20

Show answer

Tags: numbers, grids

16 December

Solve the crossnumber to find today's number. No number starts with 0.

Show answer

15 December

When talking to someone about this Advent calendar, you told them that the combination of XMAS and MATHS is GREAT. They were American, so asked you if the combination of XMAS and MATH is great; you said SURE. You asked them their name; they said SAM.
Each of the letters E, X, M, A, T, H, S, R, U, and G stands for a different digit 0 to 9. The following sums are correct:
Today's number is SAM. To help you get started, the letter T represents 4.

Show answer

14 December

The numbers 33, 404 and 311 contain duplicate digits. The numbers 120, 15 and 312 do not.
How many numbers between 10 and 999 (inclusive) contain no duplicate digits?

Show answer

13 December

There are 6 ways to split the sequence of the numbers 1 to 5 into three shorter sequences:
Today's number is the number of ways to split the sequence of the numbers 1 to 10 into five shorter sequences.

Show answer

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2024

Advent calendar 2023

Advent calendar 2022

Advent calendar 2021


List of all puzzles

Tags

gerrymandering tangents area neighbours matrices medians odd numbers square numbers number probabilty multiples planes range tournaments numbers grids numbers determinants binary products geometric mean taxicab geometry clocks volume tiling polygons christmas pascal's triangle graphs colouring ave money triangles shapes unit fractions advent geometry trigonometry star numbers cards factors sum to infinity addition median crossnumber lines multiplication complex numbers angles squares consecutive numbers logic coordinates sets dice cryptic clues geometric means calculus sequences menace digital products differentiation digital clocks chocolate percentages cryptic crossnumbers partitions rugby quadrilaterals grids combinatorics dodecagons regular shapes perfect numbers 3d shapes parabolas albgebra decahedra mean ellipses scales square grids spheres integers 2d shapes pentagons wordplay books chess powers people maths perimeter functions averages indices expansions bases coins floors digits crossnumbers crosswords probability dates doubling integration hexagons proportion consecutive integers means prime numbers cubics fractions circles polynomials rectangles quadratics palindromes speed square roots folding tube maps sport irreducible numbers elections triangle numbers balancing dominos routes even numbers arrows axes chalkdust crossnumber shape division the only crossnumber games symmetry factorials surds algebra remainders cube numbers time sums

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2025