mscroggs.co.uk
mscroggs.co.uk

subscribe

Puzzles

24 December

When written in binary, the number 235 is 11101011. This binary representation starts and ends with 1 and does not contain two 0s in a row.
What is the smallest three-digit number whose binary representation starts and ends with 1 and does not contain two 0s in a row?

Show answer

23 December

There are 18 ways to split a 3 by 3 square into 3 rectangles whose sides all have integer length:
How many ways are there to split a 10 by 10 square into 3 rectangles whose sides all have integer length?

Show answer

22 December

There are 4 ways to pick three vertices of a regular quadrilateral so that they form a right-angled triangle:
In another regular polygon with \(n\) sides, there are 14620 ways to pick three vertices so that they form a right-angled triangle. What is \(n\)?

Show answer

21 December

There are 6 two-digit numbers whose digits are all 1, 2, or 3 and whose second digit onwards are all less than or equal to the previous digit:
How many 20-digit numbers are there whose digits are all 1, 2, or 3 and whose second digit onwards are all less than or equal to the previous digit?

Show answer & extension

20 December

There are 6 different ways that three balls labelled 1 to 3 can be put into two boxes labelled A and B so that no box is empty:
How many ways can five balls labelled 1 to 5 be put into four boxes labelled A to D so that no box is empty?

Show answer

19 December

Put the digits 1 to 9 (using each digit exactly once) in the boxes so that the sums are correct. The sums should be read left to right and top to bottom ignoring the usual order of operations. For example, 4+3×2 is 14, not 10. Today's number is the product of the numbers in the red boxes.
+= 7
× × ×
+= 0
÷ ÷ ÷
+= 2
=
4
=
35
=
18

Show answer

Tags: numbers, grids

18 December

Some numbers can be written as the product of two or more consecutive integers, for example:
$$6=2\times3$$ $$840=4\times5\times6\times7$$
What is the smallest three-digit number that can be written as the product of two or more consecutive integers?

17 December

If you expand \((a+b+c)^2\), you get \(a^2+b^2+c^2+2ab+2ac+2bc\). This has 6 terms.
How many terms does the expansion of \((a+b+c+d+e+f)^5\) have?

Show answer

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2023

Advent calendar 2022

Advent calendar 2021

Advent calendar 2020


List of all puzzles

Tags

crossnumbers advent averages shape matrices palindromes floors binary indices polynomials shapes cryptic clues digital products cryptic crossnumbers 3d shapes rugby squares expansions proportion bases calculus area combinatorics polygons gerrymandering tiling taxicab geometry pascal's triangle addition tournaments speed cube numbers even numbers surds spheres parabolas arrows digital clocks chess perimeter square numbers coordinates sport wordplay consecutive integers multiples perfect numbers coins ave digits volume regular shapes crossnumber elections percentages consecutive numbers square roots odd numbers dice axes circles algebra decahedra sum to infinity lines planes tangents chalkdust crossnumber pentagons people maths routes complex numbers numbers mean balancing determinants range star numbers clocks multiplication probabilty dominos factors differentiation cards christmas dates 2d shapes cubics functions partitions fractions sequences rectangles triangle numbers logic albgebra hexagons ellipses median division folding tube maps chocolate remainders means unit fractions doubling menace angles geometric mean products books sets number games integers money the only crossnumber time quadratics scales quadrilaterals integration factorials crosswords symmetry grids irreducible numbers colouring trigonometry geometric means sums prime numbers geometry triangles probability graphs dodecagons

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2024