mscroggs.co.uk
mscroggs.co.uk

subscribe

Puzzles

17 December

Put the digits 1 to 9 (using each digit exactly once) in the boxes so that the sums are correct. The sums should be read left to right and top to bottom ignoring the usual order of operations. For example, 4+3×2 is 14, not 10. Today's number is the product of the numbers in the red boxes.
++= 10
+ × ×
++= 12
+ +
++= 23
=
10
=
12
=
23

Show answer

Tags: numbers, grids

16 December

Noel writes the integers from 1 to 1000 in a large triangle like this:
The rightmost number in the row containing the number 6 is 9. What is the rightmost number in the row containing the number 300?

Show answer

Tags: numbers

15 December

There are 3 even numbers between 3 and 9.
What is the only odd number \(n\) such that there are \(n\) even numbers between \(n\) and 729?

Show answer & extension

12 December

The determinant of the 2 by 2 matrix \(\begin{pmatrix}a&b\\c&d\end{pmatrix}\) is \(ad-bc\).
If a 2 by 2 matrix's entries are all in the set \(\{1, 2, 3\}\), the largest possible deteminant of this matrix is 8.
What is the largest possible determinant of a 2 by 2 matrix whose entries are all in the set \(\{1, 2, 3, ..., 12\}\)?

Show answer & extension

11 December

There are five 3-digit numbers whose digits are all either 1 or 2 and who do not contain two 2s in a row: 111, 112, 121, 211, and 212.
How many 14-digit numbers are there whose digits are all either 1 or 2 and who do not contain two 2s in a row?

Show answer

9 December

Put the digits 1 to 9 (using each digit exactly once) in the boxes so that the sums are correct. The sums should be read left to right and top to bottom ignoring the usual order of operations. For example, 4+3×2 is 14, not 10. Today's number is the largest number you can make with the digits in the red boxes.
++= 20
+ + ÷
+= 0
+ ×
÷×= 12
=
22
=
6
=
2

Show answer

Tags: numbers, grids

6 December

There are 21 three-digit integers whose digits are all non-zero and whose digits add up to 8.
How many positive integers are there whose digits are all non-zero and whose digits add up to 8?

Show answer & extension

5 December

Put the digits 1 to 9 (using each digit exactly once) in the boxes so that the sums are correct. The sums should be read left to right and top to bottom ignoring the usual order of operations. For example, 4+3×2 is 14, not 10. Today's number is the product of the numbers in the red boxes.
×÷= 15
+ + +
×÷= 14
×÷= 27
=
9
=
5
=
5

Show answer

Tags: numbers, grids

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2024

Advent calendar 2023

Advent calendar 2022

Advent calendar 2021


List of all puzzles

Tags

angles proportion powers wordplay grids floors factorials cryptic crossnumbers crosswords means routes remainders polygons neighbours spheres speed cryptic clues ave quadrilaterals symmetry volume parabolas time odd numbers area regular shapes shape chess sums christmas the only crossnumber probability geometric mean cubics quadratics books trigonometry chocolate algebra partitions lines multiples triangle numbers colouring consecutive integers menace logic pentagons tournaments planes complex numbers sport dice 3d shapes perimeter tiling prime numbers integration doubling perfect numbers games expansions median matrices tangents sum to infinity probabilty clocks calculus polynomials gerrymandering scales cards binary products averages dodecagons taxicab geometry integers multiplication money rugby functions shapes determinants triangles sets axes square numbers folding tube maps digital clocks dominos ellipses geometric means medians differentiation coordinates people maths chalkdust crossnumber combinatorics digits even numbers geometry irreducible numbers division range percentages palindromes dates decahedra factors graphs balancing consecutive numbers crossnumbers sequences number digital products coins square roots squares advent numbers grids surds indices addition hexagons circles fractions elections albgebra numbers pascal's triangle star numbers bases 2d shapes square grids cube numbers rectangles unit fractions arrows mean

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2025