mscroggs.co.uk
mscroggs.co.uk

subscribe

Puzzles

21 December

In the annual tournament of Christmas puzzles, each player must play one puzzle match against each other player. Last year there were four entrants into the tournament (A, B, C, and D), and so 6 matches were played: A vs B, C vs D, A vs D, A vs C, D vs B, and finally B vs C.
This year, the tournament has grown in popularity and 22 players have entered. How many matches will be played this year?

Show answer

19 December

120 is the smallest number with exactly 16 factors (including 1 and 120 itself).
What is the second smallest number with exactly 16 factors (including 1 and the number itself)?

Show answer

18 December

Noel writes the integers from 1 to 1000 in a large triangle like this:
The number 12 is directly below the number 6. Which number is directly below the number 133?

Show answer

Tags: numbers

17 December

Put the digits 1 to 9 (using each digit exactly once) in the boxes so that the sums are correct. The sums should be read left to right and top to bottom ignoring the usual order of operations. For example, 4+3×2 is 14, not 10. Today's number is the product of the numbers in the red boxes.
++= 10
+ × ×
++= 12
+ +
++= 23
=
10
=
12
=
23

Show answer

Tags: numbers, grids

16 December

Noel writes the integers from 1 to 1000 in a large triangle like this:
The rightmost number in the row containing the number 6 is 9. What is the rightmost number in the row containing the number 300?

Show answer

Tags: numbers

15 December

There are 3 even numbers between 3 and 9.
What is the only odd number \(n\) such that there are \(n\) even numbers between \(n\) and 729?

Show answer & extension

12 December

The determinant of the 2 by 2 matrix \(\begin{pmatrix}a&b\\c&d\end{pmatrix}\) is \(ad-bc\).
If a 2 by 2 matrix's entries are all in the set \(\{1, 2, 3\}\), the largest possible deteminant of this matrix is 8.
What is the largest possible determinant of a 2 by 2 matrix whose entries are all in the set \(\{1, 2, 3, ..., 12\}\)?

Show answer & extension

11 December

There are five 3-digit numbers whose digits are all either 1 or 2 and who do not contain two 2s in a row: 111, 112, 121, 211, and 212.
How many 14-digit numbers are there whose digits are all either 1 or 2 and who do not contain two 2s in a row?

Show answer

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2023

Advent calendar 2022

Advent calendar 2021

Advent calendar 2020


List of all puzzles

Tags

quadrilaterals combinatorics digital products products percentages the only crossnumber multiples cards star numbers factors averages logic partitions shapes cube numbers surds digital clocks 2d shapes tournaments tangents triangles division area determinants volume tiling speed squares routes coins factorials taxicab geometry probability ellipses proportion clocks menace wordplay ave shape angles pentagons remainders christmas elections calculus crosswords people maths range 3d shapes sequences rectangles bases mean time sport decahedra axes chalkdust crossnumber prime numbers dominos sets coordinates integers floors arrows geometry spheres differentiation digits folding tube maps binary dice functions square roots sum to infinity addition chocolate cryptic crossnumbers advent sums perfect numbers colouring number albgebra planes chess trigonometry means scales palindromes algebra irreducible numbers rugby integration regular shapes consecutive numbers graphs fractions indices polynomials grids dodecagons odd numbers perimeter books crossnumbers symmetry pascal's triangle consecutive integers quadratics square numbers polygons money triangle numbers geometric mean lines cryptic clues unit fractions complex numbers hexagons parabolas circles balancing expansions dates numbers crossnumber median multiplication games even numbers gerrymandering cubics geometric means probabilty doubling matrices

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2024