mscroggs.co.uk
mscroggs.co.uk

subscribe

Puzzles

18 December

Some numbers can be written as the product of two or more consecutive integers, for example:
$$6=2\times3$$ $$840=4\times5\times6\times7$$
What is the smallest three-digit number that can be written as the product of two or more consecutive integers?

15 December

The arithmetic mean of a set of \(n\) numbers is computed by adding up all the numbers, then dividing the result by \(n\). The geometric mean of a set of \(n\) numbers is computed by multiplying all the numbers together, then taking the \(n\)th root of the result.
The arithmetic mean of the digits of the number 132 is \(\tfrac13(1+3+2)=2\). The geometric mean of the digits of the number 139 is \(\sqrt[3]{1\times3\times9}\)=3.
What is the smallest three-digit number whose first digit is 4 and for which the arithmetic and geometric means of its digits are both non-zero integers?

Show answer & extension

12 December

What is the smallest value of \(n\) such that
$$\frac{500!\times499!\times498!\times\dots\times1!}{n!}$$
is a square number?

Show answer

11 December

Put the digits 1 to 9 (using each digit exactly once) in the boxes so that the sums are correct. The sums should be read left to right and top to bottom ignoring the usual order of operations. For example, 4+3×2 is 14, not 10. Today's number is the product of the numbers in the red boxes.
++= 15
+ + ÷
+= 10
+ ×
÷×= 3
=
16
=
1
=
30

Show answer

Tags: numbers, grids

10 December

How many integers are there between 100 and 1000 whose digits add up to an even number?

Show answer

8 December

Noel writes the numbers 1 to 17 in a row. Underneath, he writes the same list without the first and last numbers, then continues this until he writes a row containing just one number:
What is the sum of all the numbers that Noel has written?

Show answer & extension

Tags: numbers

6 December

There are 5 ways to tile a 4×2 rectangle with 2×1 pieces:
How many ways are there to tile a 12×2 rectangle with 2×1 pieces?

Show answer

5 December

Put the digits 1 to 9 (using each digit exactly once) in the boxes so that the sums are correct. The sums should be read left to right and top to bottom ignoring the usual order of operations. For example, 4+3×2 is 14, not 10. Today's number is the product of the numbers in the red boxes.
++= 15
+ +
++= 15
+ × ÷
++= 15
=
15
=
15
=
15

Show answer

Tags: numbers, grids

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2024

Advent calendar 2023

Advent calendar 2022

Advent calendar 2021


List of all puzzles

Tags

combinatorics arrows division squares circles tangents square grids advent multiplication factorials fractions digital clocks folding tube maps area cryptic crossnumbers planes clocks integers range powers grids logic christmas rectangles surds doubling crossnumbers unit fractions sequences crossnumber sport menace complex numbers angles crosswords sum to infinity perfect numbers taxicab geometry 3d shapes elections digits cubics digital products scales wordplay median probabilty pentagons square numbers spheres averages geometric means balancing money remainders consecutive integers integration lines cube numbers games dates triangles number geometry albgebra shape dominos irreducible numbers coordinates sets tournaments pascal's triangle calculus quadrilaterals floors gerrymandering shapes parabolas time addition probability 2d shapes neighbours square roots coins odd numbers quadratics chocolate medians partitions decahedra expansions sums polygons ellipses chess differentiation prime numbers speed dodecagons volume consecutive numbers palindromes regular shapes indices numbers matrices binary numbers grids hexagons factors ave functions percentages chalkdust crossnumber star numbers algebra rugby books colouring bases multiples polynomials axes products cards people maths dice means perimeter the only crossnumber cryptic clues mean proportion determinants routes even numbers trigonometry triangle numbers graphs tiling symmetry geometric mean

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2025