mscroggs.co.uk
mscroggs.co.uk
Click here to win prizes by solving the mscroggs.co.uk puzzle Advent calendar.
Click here to win prizes by solving the mscroggs.co.uk puzzle Advent calendar.

subscribe

Puzzles

19 December

The equation \(352x^3-528x^2+90=0\) has three distinct real-valued solutions.
Today's number is the number of integers \(a\) such that the equation \(352x^3-528x^2+a=0\) has three distinct real-valued solutions.

Show answer

Tags: graphs, cubics

18 December

Put the digits 1 to 9 (using each digit exactly once) in the boxes so that the sums are correct. The sums should be read left to right and top to bottom ignoring the usual order of operations. For example, 4+3×2 is 14, not 10. Today's number is the product of the numbers in the red boxes.
++= 11
+ × ×
++= 17
× - +
++= 17
=
11
=
17
=
17

Show answer

Tags: numbers, grids

17 December

The digital product of a number is computed by multiplying together all of its digits. For example, the digital product of 6273 is 252.
Today's number is the smallest number whose digital product is 252.

Show answer

16 December

Each clue in this crossnumber is formed of two parts connected by a logical connective: and means that both parts are true; nand means that at most one part is true; or means that at least one part is true; nor means that neither part is true; xor means that exactly one part is true; xnor means that either both parts are false or both parts are true. No number starts with 0.

Show answer

15 December

The odd numbers are written in a pyramid.
What is the mean of the numbers in the 19th row?

Show answer

Tags: numbers

14 December

You start at the point marked A in the picture below. You want to get to the point marked B. You may travel to the right, upwards, or to the left along the black lines, but you cannot pass along the same line segment more than once.
Today's number is the total number of possible routes to get from A to B.

Show answer

Tags: routes

13 December

The diagram to the left shows three circles and two triangles. The three circles all meet at one point. The vertices of the smaller red triangle are at the centres of the circles. The lines connecting the vertices of the larger blue triangle to the point where all three circles meet are diameters of the three circles.
The area of the smaller red triangle is 226. What is the area of the larger blue triangle?

Show answer

12 December

You start at the point marked A in the picture below. You want to get to the point marked B. You may travel to the right or upwards along the black lines.
Today's number is the total number of possible routes to get from A to B.

Show answer

Tags: routes

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2023

Advent calendar 2022

Advent calendar 2021

Advent calendar 2020


List of all puzzles

Tags

differentiation squares volume symmetry quadratics determinants prime numbers square numbers books parabolas tiling bases products median cryptic crossnumbers elections complex numbers regular shapes square roots the only crossnumber rugby wordplay ave rectangles digital products sums pascal's triangle cards geometric means geometric mean geometry colouring hexagons even numbers integers cube numbers circles partitions division money factorials dodecagons taxicab geometry floors dominos cubics probabilty perimeter spheres digits christmas sum to infinity digital clocks crosswords binary consecutive integers tournaments shapes polynomials folding tube maps combinatorics functions dice time dates remainders sequences doubling logic sets area factors unit fractions numbers quadrilaterals crossnumbers graphs gerrymandering grids advent coordinates fractions averages scales calculus 2d shapes shape percentages multiplication surds axes triangle numbers albgebra sport games 3d shapes polygons chalkdust crossnumber cryptic clues odd numbers integration tangents matrices range star numbers arrows expansions clocks crossnumber speed proportion indices probability decahedra lines routes planes pentagons palindromes chess people maths ellipses algebra menace balancing multiples number angles triangles chocolate addition perfect numbers consecutive numbers irreducible numbers mean coins means trigonometry

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2024