mscroggs.co.uk
mscroggs.co.uk
Click here to win prizes by solving the mscroggs.co.uk puzzle Advent calendar.
Click here to win prizes by solving the mscroggs.co.uk puzzle Advent calendar.

subscribe

Puzzles

19 December

The equation \(352x^3-528x^2+90=0\) has three distinct real-valued solutions.
Today's number is the number of integers \(a\) such that the equation \(352x^3-528x^2+a=0\) has three distinct real-valued solutions.

Show answer

Tags: graphs, cubics

18 December

Put the digits 1 to 9 (using each digit exactly once) in the boxes so that the sums are correct. The sums should be read left to right and top to bottom ignoring the usual order of operations. For example, 4+3×2 is 14, not 10. Today's number is the product of the numbers in the red boxes.
++= 11
+ × ×
++= 17
× - +
++= 17
=
11
=
17
=
17

Show answer

Tags: numbers, grids

17 December

The digital product of a number is computed by multiplying together all of its digits. For example, the digital product of 6273 is 252.
Today's number is the smallest number whose digital product is 252.

Show answer

16 December

Each clue in this crossnumber is formed of two parts connected by a logical connective: and means that both parts are true; nand means that at most one part is true; or means that at least one part is true; nor means that neither part is true; xor means that exactly one part is true; xnor means that either both parts are false or both parts are true. No number starts with 0.

Show answer

15 December

The odd numbers are written in a pyramid.
What is the mean of the numbers in the 19th row?

Show answer

Tags: numbers

14 December

You start at the point marked A in the picture below. You want to get to the point marked B. You may travel to the right, upwards, or to the left along the black lines, but you cannot pass along the same line segment more than once.
Today's number is the total number of possible routes to get from A to B.

Show answer

Tags: routes

13 December

The diagram to the left shows three circles and two triangles. The three circles all meet at one point. The vertices of the smaller red triangle are at the centres of the circles. The lines connecting the vertices of the larger blue triangle to the point where all three circles meet are diameters of the three circles.
The area of the smaller red triangle is 226. What is the area of the larger blue triangle?

Show answer

12 December

You start at the point marked A in the picture below. You want to get to the point marked B. You may travel to the right or upwards along the black lines.
Today's number is the total number of possible routes to get from A to B.

Show answer

Tags: routes

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2023

Advent calendar 2022

Advent calendar 2021

Advent calendar 2020


List of all puzzles

Tags

planes complex numbers differentiation perimeter dates numbers surds functions dice menace crossnumber lines dominos graphs circles combinatorics dodecagons multiplication integration people maths matrices proportion axes sequences cubics star numbers cards sum to infinity prime numbers square numbers tiling expansions calculus irreducible numbers digits even numbers quadratics ave money digital products chalkdust crossnumber partitions range colouring decahedra algebra cryptic clues products indices quadrilaterals chess logic pentagons mean clocks palindromes shapes sets tournaments triangle numbers taxicab geometry median arrows probabilty multiples time addition number pascal's triangle square roots wordplay determinants parabolas grids division spheres digital clocks means routes shape polynomials gerrymandering consecutive integers area sums games cryptic crossnumbers rectangles tangents hexagons triangles geometry cube numbers chocolate crosswords binary sport rugby speed percentages trigonometry bases christmas 3d shapes probability perfect numbers geometric mean folding tube maps polygons angles factors averages crossnumbers geometric means coordinates integers squares fractions albgebra 2d shapes the only crossnumber volume doubling consecutive numbers unit fractions coins elections advent ellipses floors balancing factorials regular shapes books symmetry remainders scales odd numbers

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2024