mscroggs.co.uk
mscroggs.co.uk

subscribe

Puzzles

8 December

Arrange the digits 1-9 in a 3×3 square so: each digit the first row is the number of letters in the (English) name of the previous digit, each digit in the second row is one less than the previous digit, each digit in the third row is a multiple of the previous digit; the second column is an 3-digit even number, and the third column contains one even digit. The number in the first column is today's number.
each digit is the number of letters in the previous digit
each digit is one less than previous
each digit is multiple of previous
today's numbereven1 even digit
Edit: There was a mistake in this puzzle: the original had two solutions. If you entered the wrong solution, it will automatically change to the correct one.

Show answer

Tags: numbers, grids

7 December

There is a row of 1000 closed lockers numbered from 1 to 1000 (inclusive). Near the lockers, there is a bucket containing the numbers 1 to 1000 (inclusive) written on scraps of paper.
1000 people then each do the following:
Today's number is the number of lockers that will be closed at the end of this process.

Show answer

6 December

This puzzle was part of the 2018 Advent calendar.
This puzzle is inspired by a puzzle that Daniel Griller showed me.
Write down the numbers from 12 to 22 (including 12 and 22). Under each number, write down its largest odd factor*.
Today's number is the sum of all these odd factors.
* If a number is odd, then its largest odd factor is the number itself.

Show answer

5 December

I make a book by taking 111 sheets of paper, folding them all in half, then stapling them all together through the fold. I then number the pages from 1 to 444.
Today's number is the sum of the two page numbers on the centre spread of my book.
Tags: numbers, books

4 December

Today's number is the number of 0s that 611! (611×610×...×2×1) ends in.

Show answer

3 December

Put the digits 1 to 9 (using each digit exactly once) in the boxes so that the sums are correct. The sums should be read left to right and top to bottom ignoring the usual order of operations. For example, 4+3×2 is 14, not 10. Today's number is the product of the numbers in the red boxes.
++= 11
- + ×
+-= 11
- - -
++= 11
=
-11
=
11
=
11

Show answer

Tags: numbers, grids

2 December

Today's number is the area of the largest dodecagon that it's possible to fit inside a circle with area \(\displaystyle\frac{172\pi}3\).

Show answer

1 December

There are 5 ways to write 4 as the sum of 1s and 2s:
Today's number is the number of ways you can write 12 as the sum of 1s and 2s.

Show answer

Tags: numbers

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2024

Advent calendar 2023

Advent calendar 2022

Advent calendar 2021


List of all puzzles

Tags

speed wordplay parabolas median prime numbers crosswords money tiling complex numbers chocolate floors volume geometric means albgebra colouring pentagons probability consecutive integers fractions circles ellipses polygons clocks surds addition grids factors tangents regular shapes christmas spheres arrows people maths digits multiples consecutive numbers means rectangles bases logic 2d shapes shapes quadratics crossnumber squares gerrymandering trigonometry time square grids partitions pascal's triangle area dates unit fractions coins chalkdust crossnumber planes hexagons percentages menace perimeter geometric mean expansions numbers shape taxicab geometry mean sequences differentiation number determinants chess perfect numbers probabilty cube numbers matrices division neighbours lines integration axes cubics doubling cryptic crossnumbers integers games star numbers decahedra numbers grids triangles binary combinatorics 3d shapes scales elections dodecagons algebra advent polynomials crossnumbers the only crossnumber coordinates dominos rugby books indices dice products even numbers multiplication averages sport functions sums proportion powers digital products cryptic clues square numbers calculus graphs sets factorials ave quadrilaterals sum to infinity range folding tube maps digital clocks routes irreducible numbers medians tournaments cards balancing odd numbers square roots palindromes remainders angles triangle numbers symmetry geometry

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2025