mscroggs.co.uk
mscroggs.co.uk

subscribe

Sunday Afternoon Maths XXVII

 Posted on 2014-09-07 

Sine

A sine curve can be created with five people by giving the following instructions to the five people:
A. Stand on the spot.
B. Walk around A in a circle, holding this string to keep you the same distance away.
C. Stay in line with B, staying on this line.
D. Walk in a straight line perpendicular to C's line.
E. Stay in line with C and D. E will trace the path of a sine curve as shown here:
What instructions could you give to five people to trace a cos(ine) curve?
What instructions could you give to five people to trace a tan(gent) curve?

Show answer & extension

Triangles between squares

Prove that there are never more than two triangle numbers between two consecutive square numbers.

Show answer & extension

If you enjoyed these puzzles, check out Advent calendar 2024,
puzzles about books, or a random puzzle.

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2024

Advent calendar 2023

Advent calendar 2022

Advent calendar 2021


List of all puzzles

Tags

shape dominos christmas percentages sums polynomials grids cards elections consecutive numbers integration taxicab geometry routes logic rugby time scales numbers palindromes sum to infinity rectangles geometric mean matrices prime numbers cubics square roots sport number perfect numbers dates star numbers axes numbers grids area products spheres sets quadrilaterals dodecagons colouring range coordinates algebra proportion irreducible numbers books indices even numbers complex numbers games regular shapes graphs odd numbers sequences angles people maths pentagons the only crossnumber advent tangents wordplay arrows determinants differentiation hexagons perimeter lines addition mean partitions multiplication cryptic crossnumbers expansions albgebra division bases ave geometry coins consecutive integers unit fractions planes clocks shapes crossnumber trigonometry quadratics probability volume probabilty triangles binary powers calculus crossnumbers balancing floors fractions cube numbers remainders ellipses averages means digits neighbours tiling folding tube maps integers square grids triangle numbers surds dice crosswords median digital products square numbers squares chocolate factors 2d shapes factorials speed circles chess gerrymandering menace polygons chalkdust crossnumber money doubling decahedra tournaments symmetry digital clocks cryptic clues multiples parabolas combinatorics medians pascal's triangle 3d shapes functions geometric means

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2025