mscroggs.co.uk
mscroggs.co.uk

subscribe

Puzzles

Four integers

\(a\), \(b\), \(c\) and \(d\) are four positive (and non-zero) integers.
$$abcd+abc+bcd+cda+dab+ab+bc+cd+da+ac+bd\\+a+b+c+d=2009$$
What is the value of \(a+b+c+d\)?

Show answer & extension

If you enjoyed this puzzle, check out Sunday Afternoon Maths XXXIV,
puzzles about algebra, or a random puzzle.

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2023

Advent calendar 2022

Advent calendar 2021

Advent calendar 2020


List of all puzzles

Tags

digital clocks chocolate polygons median angles chalkdust crossnumber planes differentiation sums square numbers polynomials ave integers pentagons mean products advent triangle numbers quadratics albgebra balancing addition logic palindromes time sum to infinity wordplay triangles complex numbers averages cards geometric means colouring probabilty binary range star numbers shapes shape floors irreducible numbers coins crossnumbers combinatorics digital products grids doubling calculus algebra numbers christmas dates factorials regular shapes chess trigonometry perimeter decahedra multiples factors surds tiling hexagons graphs tangents crossnumber rugby sport arrows proportion circles consecutive numbers games sequences determinants crosswords indices 2d shapes functions cube numbers perfect numbers quadrilaterals cryptic crossnumbers partitions number matrices remainders cubics spheres squares volume symmetry rectangles parabolas division routes unit fractions percentages speed area scales digits even numbers elections menace axes folding tube maps bases ellipses 3d shapes cryptic clues means sets gerrymandering square roots prime numbers fractions books dice geometric mean lines dominos pascal's triangle expansions tournaments taxicab geometry multiplication probability integration coordinates people maths clocks dodecagons money geometry odd numbers consecutive integers the only crossnumber

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2024