mscroggs.co.uk
mscroggs.co.uk

subscribe

Puzzles

Four integers

\(a\), \(b\), \(c\) and \(d\) are four positive (and non-zero) integers.
$$abcd+abc+bcd+cda+dab+ab+bc+cd+da+ac+bd\\+a+b+c+d=2009$$
What is the value of \(a+b+c+d\)?

Show answer & extension

If you enjoyed this puzzle, check out Sunday Afternoon Maths XXXIV,
puzzles about numbers, or a random puzzle.

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2023

Advent calendar 2022

Advent calendar 2021

Advent calendar 2020


List of all puzzles

Tags

products quadratics squares fractions prime numbers geometric means planes numbers digital clocks time triangles multiples cube numbers folding tube maps digital products sport averages shape range books dice taxicab geometry symmetry gerrymandering cards digits lines integers functions factorials advent clocks irreducible numbers cryptic clues calculus wordplay mean sequences consecutive numbers dates addition 3d shapes dominos circles complex numbers square roots floors spheres area palindromes sum to infinity chess indices percentages polynomials 2d shapes albgebra ave decahedra angles ellipses surds cubics median binary routes people maths logic tiling arrows hexagons probability regular shapes trigonometry graphs tangents algebra expansions chalkdust crossnumber rugby shapes matrices differentiation speed crossnumbers pentagons consecutive integers crossnumber bases division multiplication unit fractions money sets coordinates pascal's triangle odd numbers volume menace determinants means doubling christmas integration star numbers colouring scales tournaments balancing even numbers number dodecagons chocolate crosswords cryptic crossnumbers remainders coins triangle numbers perfect numbers polygons geometry partitions square numbers parabolas elections grids quadrilaterals axes proportion the only crossnumber games factors rectangles combinatorics probabilty perimeter geometric mean sums

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2024