mscroggs.co.uk
mscroggs.co.uk

subscribe

Puzzles

Odd and even outputs

Let \(g:\mathbb{N}\times\mathbb{N}\rightarrow\mathbb{N}\) be a function.
This means that \(g\) takes two natural number inputs and gives one natural number output. For example if \(g\) is defined by \(g(n,m)=n+m\) then \(g(3,4)=7\) and \(g(10,2)=12\).
The function \(g(n,m)=n+m\) will give an even output if \(n\) and \(m\) are both odd or both even and an odd output if one is odd and the other is even. This could be summarised in the following table:
\(n\)
oddeven
\(m\)oddevenodd
eoddeven
Using only \(+\) and \(\times\), can you construct functions \(g(n,m)\) which give the following output tables:
\(n\)
oddeven
\(m\)oddoddodd
eoddodd
\(n\)
oddeven
\(m\)oddoddodd
eoddeven
\(n\)
oddeven
\(m\)oddoddodd
eevenodd
\(n\)
oddeven
\(m\)oddoddodd
eeveneven
\(n\)
oddeven
\(m\)oddoddeven
eoddodd
\(n\)
oddeven
\(m\)oddoddeven
eoddeven
\(n\)
oddeven
\(m\)oddoddeven
eevenodd
\(n\)
oddeven
\(m\)oddoddeven
eeveneven
\(n\)
oddeven
\(m\)oddevenodd
eoddodd
\(n\)
oddeven
\(m\)oddevenodd
eoddeven
\(n\)
oddeven
\(m\)oddevenodd
eevenodd
\(n\)
oddeven
\(m\)oddevenodd
eeveneven
\(n\)
oddeven
\(m\)oddeveneven
eoddodd
\(n\)
oddeven
\(m\)oddeveneven
eoddeven
\(n\)
oddeven
\(m\)oddeveneven
eevenodd
\(n\)
oddeven
\(m\)oddeveneven
eeveneven

Show answer & extension

Tags: functions
If you enjoyed this puzzle, check out Sunday Afternoon Maths XXVI,
puzzles about functions, or a random puzzle.

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2023

Advent calendar 2022

Advent calendar 2021

Advent calendar 2020


List of all puzzles

Tags

quadratics partitions the only crossnumber multiplication rectangles sport gerrymandering 2d shapes range palindromes routes digits digital clocks calculus coordinates division odd numbers money dice polynomials tiling algebra cube numbers determinants combinatorics albgebra square roots numbers symmetry time taxicab geometry cryptic clues regular shapes chocolate logic surds advent square numbers graphs planes indices sets books christmas dodecagons perimeter bases games parabolas consecutive numbers mean pascal's triangle cubics coins integration chess addition differentiation decahedra unit fractions geometry integers geometric mean crossnumber triangles perfect numbers median lines probabilty trigonometry percentages complex numbers means grids quadrilaterals cards shape scales clocks tournaments shapes factorials colouring even numbers ave rugby expansions crossnumbers sequences 3d shapes pentagons tangents area elections floors dates remainders spheres chalkdust crossnumber consecutive integers sum to infinity circles irreducible numbers cryptic crossnumbers fractions volume balancing ellipses sums multiples probability speed hexagons triangle numbers averages doubling wordplay functions polygons arrows geometric means crosswords prime numbers number proportion people maths dominos squares folding tube maps axes matrices binary menace products angles factors star numbers digital products

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2024