mscroggs.co.uk
mscroggs.co.uk

subscribe

Puzzles

Two

Find \(a\) such that \(a+(a+A)^{-1}=2\), where \(A=(a+A)^{-1}\).
ie. \(a + \frac{1}{a + \frac{1}{a + \frac{1}{a + \frac{1}{...}}}} = 2\).
Find \(b\) such that \(b+(b+B)^{\frac{1}{2}}=2\), where \(B=(b+B)^{\frac{1}{2}}\).
ie. \(b + \sqrt{b + \sqrt{b + \sqrt{b + \sqrt{...}}}} = 2\).
Find \(c\) such that \(c+(c+C)^{2}=2\), where \(C=(c+C)^{2}\).
In terms of \(k\), find \(d\) such that \(d+(d+D)^{k}=2\), where \(D=(d+D)^{k}\).

Show answer & extension

Tags: numbers
If you enjoyed this puzzle, check out Sunday Afternoon Maths VIII,
puzzles about numbers, or a random puzzle.

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2023

Advent calendar 2022

Advent calendar 2021

Advent calendar 2020


List of all puzzles

Tags

cryptic clues cube numbers scales geometric means crossnumber volume cryptic crossnumbers games digital clocks quadrilaterals albgebra perfect numbers regular shapes triangle numbers number axes trigonometry taxicab geometry rugby algebra rectangles tiling division crosswords palindromes matrices folding tube maps calculus wordplay sets symmetry addition shape percentages tournaments proportion determinants money speed christmas cards polygons dates routes triangles probability clocks mean lines median parabolas graphs time quadratics numbers spheres polynomials grids complex numbers odd numbers range pentagons multiplication geometric mean advent planes prime numbers even numbers perimeter circles products balancing chocolate ave integration tangents gerrymandering square roots square numbers integers hexagons floors chess area the only crossnumber binary averages functions people maths chalkdust crossnumber angles squares decahedra consecutive numbers sport 3d shapes partitions 2d shapes probabilty shapes doubling sum to infinity indices consecutive integers bases star numbers cubics pascal's triangle books menace remainders colouring dominos crossnumbers sequences elections digital products logic arrows dodecagons ellipses combinatorics fractions factors coins dice multiples factorials geometry coordinates sums means unit fractions digits irreducible numbers surds expansions differentiation

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2024