mscroggs.co.uk
mscroggs.co.uk

subscribe

Puzzles

Two

Find \(a\) such that \(a+(a+A)^{-1}=2\), where \(A=(a+A)^{-1}\).
ie. \(a + \frac{1}{a + \frac{1}{a + \frac{1}{a + \frac{1}{...}}}} = 2\).
Find \(b\) such that \(b+(b+B)^{\frac{1}{2}}=2\), where \(B=(b+B)^{\frac{1}{2}}\).
ie. \(b + \sqrt{b + \sqrt{b + \sqrt{b + \sqrt{...}}}} = 2\).
Find \(c\) such that \(c+(c+C)^{2}=2\), where \(C=(c+C)^{2}\).
In terms of \(k\), find \(d\) such that \(d+(d+D)^{k}=2\), where \(D=(d+D)^{k}\).

Show answer & extension

Tags: numbers
If you enjoyed this puzzle, check out Sunday Afternoon Maths VIII,
puzzles about numbers, or a random puzzle.

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2024

Advent calendar 2023

Advent calendar 2022

Advent calendar 2021


List of all puzzles

Tags

squares medians addition decahedra trigonometry prime numbers axes angles indices tangents unit fractions sum to infinity crossnumbers multiples determinants planes binary doubling digital clocks money median odd numbers clocks time percentages shapes averages tournaments cryptic crossnumbers grids algebra geometric means digits remainders people maths circles 2d shapes polynomials spheres number products taxicab geometry rectangles range complex numbers geometry powers sport sequences routes coordinates menace ave dominos crosswords even numbers rugby numbers grids christmas consecutive numbers shape ellipses quadratics triangle numbers palindromes volume division parabolas sets integers elections chess probability floors graphs lines expansions probabilty games 3d shapes balancing coins hexagons folding tube maps area calculus tiling triangles cryptic clues regular shapes square grids combinatorics surds fractions integration wordplay cards consecutive integers irreducible numbers numbers differentiation albgebra advent perimeter bases matrices logic chalkdust crossnumber symmetry scales digital products square numbers books arrows star numbers colouring proportion sums means factorials geometric mean dice chocolate square roots speed pascal's triangle partitions factors mean cube numbers perfect numbers multiplication pentagons dodecagons gerrymandering cubics dates neighbours polygons quadrilaterals the only crossnumber functions

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2025