mscroggs.co.uk
mscroggs.co.uk

subscribe

Puzzles

Two

Find \(a\) such that \(a+(a+A)^{-1}=2\), where \(A=(a+A)^{-1}\).
ie. \(a + \frac{1}{a + \frac{1}{a + \frac{1}{a + \frac{1}{...}}}} = 2\).
Find \(b\) such that \(b+(b+B)^{\frac{1}{2}}=2\), where \(B=(b+B)^{\frac{1}{2}}\).
ie. \(b + \sqrt{b + \sqrt{b + \sqrt{b + \sqrt{...}}}} = 2\).
Find \(c\) such that \(c+(c+C)^{2}=2\), where \(C=(c+C)^{2}\).
In terms of \(k\), find \(d\) such that \(d+(d+D)^{k}=2\), where \(D=(d+D)^{k}\).

Show answer & extension

Tags: numbers
If you enjoyed this puzzle, check out Sunday Afternoon Maths VIII,
puzzles about numbers, or a random puzzle.

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2024

Advent calendar 2023

Advent calendar 2022

Advent calendar 2021


List of all puzzles

Tags

cryptic crossnumbers probability crosswords averages sequences parabolas perimeter symmetry combinatorics surds remainders grids decahedra mean cryptic clues books matrices crossnumber gerrymandering percentages graphs digital clocks geometry folding tube maps tournaments rectangles menace the only crossnumber odd numbers lines routes sport trigonometry money axes taxicab geometry triangles 2d shapes factors planes partitions bases hexagons palindromes numbers christmas shapes dice neighbours multiples polygons floors squares angles tiling numbers grids square grids time chalkdust crossnumber clocks area tangents triangle numbers games probabilty chocolate multiplication advent dates factorials medians speed square numbers coordinates regular shapes people maths powers chess geometric mean star numbers binary number dodecagons volume products sum to infinity means circles integration consecutive integers indices proportion even numbers pentagons complex numbers cubics polynomials albgebra sets range quadrilaterals rugby prime numbers elections ellipses perfect numbers cards balancing functions determinants pascal's triangle integers sums logic wordplay scales expansions colouring spheres addition digits division algebra cube numbers quadratics irreducible numbers arrows consecutive numbers median differentiation digital products 3d shapes shape calculus coins fractions dominos doubling geometric means unit fractions crossnumbers square roots ave

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2025