mscroggs.co.uk
mscroggs.co.uk

subscribe

Puzzles

Triangle numbers

Let \(T_n\) be the \(n^\mathrm{th}\) triangle number. Find \(n\) such that: $$T_n+T_{n+1}+T_{n+2}+T_{n+3}=T_{n+4}+T_{n+5}$$

Show answer & extension

If you enjoyed this puzzle, check out Sunday Afternoon Maths VI,
puzzles about triangle numbers, or a random puzzle.

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2023

Advent calendar 2022

Advent calendar 2021

Advent calendar 2020


List of all puzzles

Tags

odd numbers averages shape routes symmetry dominos tiling shapes bases cryptic clues cards sport integers tangents quadrilaterals fractions indices means spheres polygons range digits combinatorics polynomials dice determinants tournaments coins dates the only crossnumber complex numbers proportion differentiation probabilty factors cryptic crossnumbers wordplay speed folding tube maps christmas lines calculus expansions factorials consecutive numbers elections axes balancing square numbers 2d shapes cubics division remainders graphs mean chocolate sequences quadratics colouring 3d shapes chess area coordinates geometric means functions taxicab geometry circles pentagons hexagons time angles sets number geometry advent partitions addition triangles algebra percentages decahedra sum to infinity irreducible numbers square roots money rugby palindromes sums ave albgebra multiples triangle numbers trigonometry parabolas matrices star numbers rectangles chalkdust crossnumber grids clocks numbers integration cube numbers digital clocks crossnumber scales floors even numbers crossnumbers binary products logic volume people maths planes surds geometric mean digital products arrows menace probability unit fractions pascal's triangle prime numbers gerrymandering crosswords perimeter regular shapes perfect numbers median books doubling ellipses games multiplication squares dodecagons consecutive integers

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2024