mscroggs.co.uk
mscroggs.co.uk

subscribe

Puzzles

Triangle numbers

Let \(T_n\) be the \(n^\mathrm{th}\) triangle number. Find \(n\) such that: $$T_n+T_{n+1}+T_{n+2}+T_{n+3}=T_{n+4}+T_{n+5}$$

Show answer & extension

If you enjoyed this puzzle, check out Sunday Afternoon Maths VI,
puzzles about triangle numbers, or a random puzzle.

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2023

Advent calendar 2022

Advent calendar 2021

Advent calendar 2020


List of all puzzles

Tags

the only crossnumber probabilty mean circles albgebra prime numbers planes coordinates calculus grids elections arrows routes square numbers median bases dominos binary quadrilaterals algebra crosswords perimeter doubling folding tube maps chalkdust crossnumber sport number scales proportion means sequences clocks axes perfect numbers complex numbers integers shape floors coins logic area dice 2d shapes differentiation tangents remainders triangles money factorials speed digital clocks functions sum to infinity consecutive integers 3d shapes hexagons products crossnumber cube numbers chocolate multiplication odd numbers multiples cryptic clues geometry tiling lines shapes matrices partitions balancing taxicab geometry range determinants fractions menace ellipses polynomials crossnumbers dodecagons cards geometric mean digital products probability decahedra graphs pascal's triangle wordplay rugby colouring games addition percentages squares gerrymandering symmetry indices dates parabolas spheres digits division expansions star numbers factors advent chess books unit fractions irreducible numbers square roots trigonometry numbers surds sets people maths time even numbers volume ave geometric means combinatorics integration pentagons christmas sums palindromes polygons triangle numbers rectangles averages cubics consecutive numbers angles cryptic crossnumbers regular shapes tournaments quadratics

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2024