mscroggs.co.uk
mscroggs.co.uk

subscribe

Puzzles

Arctan

Prove that \(\arctan(1)+\arctan(2)+\arctan(3)=\pi\).

Show answer & extension

If you enjoyed this puzzle, check out Sunday Afternoon Maths XXXVIII,
puzzles about trigonometry, or a random puzzle.

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2024

Advent calendar 2023

Advent calendar 2022

Advent calendar 2021


List of all puzzles

Tags

gerrymandering irreducible numbers polynomials time sums cryptic clues factors quadrilaterals averages cube numbers shape axes dodecagons division albgebra partitions range palindromes matrices geometry multiples folding tube maps tournaments crosswords fractions integers square roots the only crossnumber functions taxicab geometry neighbours hexagons perfect numbers numbers sum to infinity consecutive numbers consecutive integers factorials products dates surds balancing probability people maths algebra probabilty even numbers routes chalkdust crossnumber circles digits trigonometry arrows decahedra parabolas elections triangles cubics area pentagons shapes tiling indices star numbers number grids logic rugby speed ellipses integration geometric mean menace advent money bases crossnumber calculus clocks geometric means dice sequences square grids 2d shapes digital products powers spheres pascal's triangle medians 3d shapes numbers grids graphs colouring floors binary ave complex numbers differentiation triangle numbers wordplay coins scales cards lines addition angles chess multiplication tangents percentages doubling squares volume planes polygons rectangles quadratics prime numbers digital clocks christmas dominos determinants chocolate cryptic crossnumbers coordinates means sport books games symmetry perimeter expansions sets unit fractions odd numbers regular shapes crossnumbers remainders combinatorics mean median proportion square numbers

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2025