mscroggs.co.uk
mscroggs.co.uk

subscribe

Blog

 2017-06-03 
As a child, I was a huge fan of Captain Scarlet and the Mysterons, Gerry Anderson's puppet-starring sci-fi series. Set in 2068, the series follows Captain Scarlet and the other members of Spectrum as they attempt to protect Earth from the Mysterons. One of my favourite episodes of the series is the third: Big Ben Strikes Again.
In this episode, the Mysterons threaten to destroy London. They do this by hijacking a vehicle carrying a nuclear device, and driving it to a car park. In the car park, the driver of the vehicle wakes up and turns the radio on. Then something weird happens: Big Ben strikes thirteen!
The driver turning on the radio. Good to know that BBC Radio 4 will still broadcast at 92-95FM in 2068.
Following this, the driver is knocked out again and wakes up in a side road somewhere. After hearing his story, Captain Blue works out that the car park must be 1500 yards away from Big Ben. Using this information, Captains Blue and Scarlet manage to track down the nuclear device and save the day.
A map of London with a circle of radius 1500 yards drawn on it.
After rewatching the episode recently, I realised that it would be possible to recreate this scene and hear Big Ben striking thirteen.

Where does Big Ben strike thirteen?

At the end of the episode, Captain Blue explains to Captain Scarlet that the effect was due to light travelling faster than sound: as the driver had the radio on, he could hear Ben's bongs both from the tower and through the radio. As radio waves travel faster than sound, the bongs over the radio can be heard earlier than the sound waves travelling through the air. Further from the tower, the gap between when the two bongs are heard is longer; and at just the right distance, the second bong on the radio will be heard at the same time as the first bong from the tower. This leads to the appearance of thirteen bongs: the first bong is just from the radio, the next eleven are both radio and from the tower, and the final bong is only from the tower.
Big Ben's bongs are approximately 4.2s apart, sound travels at 343m/s, and light travels at 3×108m/s (this is so fast that it could be assumed that the radio waves arrive instantly without changing the answer). Using these, we perform the following calculation:
$$\text{time difference} = \text{time for sound to arrive}-\text{time for light to arrive}$$ $$=\frac{\text{distance}}{\text{speed of sound}}-\frac{\text{distance}}{\text{speed of light}}$$ $$=\text{distance}\times\left(\frac1{\text{speed of sound}}-\frac1{\text{speed of light}}\right)$$ $$\text{distance}=\text{time difference}\div\left(\frac1{\text{speed of sound}}-\frac1{\text{speed of light}}\right)$$ $$=4.2\div\left(\frac1{343}-\frac1{3\times10^8}\right)$$ $$=1440\text{m}\text{ or }1574\text{ yards}$$
This is close to Captain Blue's calculation of 1500 yards (and to be fair to the Captain, he had to calculate it in his head in a few seconds). Plotting a circle of this radius centred at Big Ben gives the points where it may be possible to hear 13 bongs.
Again, the makers of Captain Scarlet got this right: their circle shown earlier is a very similar size to this one. To demonstrate that this does work (and with a little help from TD and her camera), I made the following video yesterday near Vauxhall station. I recommend using earphones to watch it as the later bongs are quite faint.

Similar posts

Proving a conjecture
Mathsteroids
Building MENACEs for other games
Tube map kaleidocycles

Comments

Comments in green were written by me. Comments in blue were not written by me.
 2018-11-16 
@g0mrb: Thanks for letting me know, I'll look into it...
Reply
Matthew
 2018-11-15 
There is no sound in this video, using Safari in iOS 12.1.1 Beta.
Reply
g0mrb
 2017-06-04 
This is awesome and wonderful. I salute you.
Reply
Ben Sparks
 2017-06-03 
Wow! This has made my weekend.
Reply
Tony Mann
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li>
To prove you are not a spam bot, please type "naidem" backwards in the box below (case sensitive):

Archive

Show me a random blog post
 2019 

Sep 2019

A non-converging LaTeX document
TMiP 2019 treasure punt

Jul 2019

Big Internet Math-Off stickers 2019

Jun 2019

Proving a conjecture

Apr 2019

Harriss and other spirals

Mar 2019

realhats

Jan 2019

Christmas (2018) is over
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

palindromes weather station electromagnetic field light christmas rugby wool inline code arithmetic latex oeis mathslogicbot graph theory books flexagons bubble bobble trigonometry chess error bars tennis speed chalkdust magazine pac-man nine men's morris approximation statistics fractals cross stitch games puzzles braiding polynomials go mathsteroids data golden spiral game show probability tmip dataset countdown interpolation manchester geometry people maths mathsjam london pizza cutting folding tube maps radio 4 draughts programming craft sport world cup manchester science festival christmas card captain scarlet talking maths in public bodmas coins menace gerry anderson asteroids curvature hexapawn a gamut of games golden ratio dates ternary propositional calculus plastic ratio sorting twitter stickers football news accuracy cambridge big internet math-off martin gardner pythagoras triangles harriss spiral dragon curves national lottery map projections hats machine learning javascript reddit python london underground raspberry pi chebyshev noughts and crosses misleading statistics final fantasy binary sound php folding paper estimation game of life realhats matt parker platonic solids logic video games european cup royal baby the aperiodical rhombicuboctahedron probability frobel reuleaux polygons

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2019