mscroggs.co.uk
mscroggs.co.uk

subscribe

Blog

Braiding, pt. 1: The question

 2016-06-29 
Since Electromagnetic Field 2014, I have been slowly making progress on a recreational math problem about braiding. In this blog post, I will show you the type of braid I am interested in and present the problem.

Making an (8,3) braid

To make what I will later refer to as an (8,3) braid, you will need:
First, cut an octagon from the cardboard. The easiest way to do this is to start with a rectangle, then cut its corners off.
Next, use the pencil to punch a hole in the middle of your octagon and cut a small slit in each face of the octagon.
Now, tie the ends of your wool together, and put them through the hole. pull each strand of wool into one of the slits.
Now you are ready to make a braid. Starting from the empty slit, count around to the third strand of will. Pull this out of its slit then into the empty slit. Then repeat this starting at the newly empty slit each time. After a short time, a braid should form through the hole in the cardboard.

The problem

I call the braid you have just made the (8,3) braid, as there are 8 slits and you move the 3rd strand each time. After I first made on of these braid, I began to wonder what was special about 8 and 3 to make this braid work, and for what other numbers \(a\) and \(b\) the (\(a\),\(b\)) would work.
In my next blog post, I will give two conditions on \(a\) and \(b\) that cause the braid to fail. Before you read that, I recommend having a go at the problem yourself. To help you on your way, I am compiling a list of braids that are known to work or fail at mscroggs.co.uk/braiding. Good luck!

Similar posts

Electromagnetic Field talk
Braiding, pt. 2
Christmas cross stitch
Logical contradictions

Comments

Comments in green were written by me. Comments in blue were not written by me.
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li>
To prove you are not a spam bot, please type "graph" in the box below (case sensitive):

Archive

Show me a random blog post
 2019 

Sep 2019

A non-converging LaTeX document
TMiP 2019 treasure punt

Jul 2019

Big Internet Math-Off stickers 2019

Jun 2019

Proving a conjecture

Apr 2019

Harriss and other spirals

Mar 2019

realhats

Jan 2019

Christmas (2018) is over
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

error bars world cup pizza cutting sorting mathsjam craft news football gerry anderson the aperiodical talking maths in public asteroids javascript matt parker twitter cambridge puzzles folding paper frobel christmas card python binary game show probability go ternary draughts london underground nine men's morris raspberry pi harriss spiral reddit national lottery coins latex accuracy cross stitch golden spiral game of life machine learning propositional calculus chalkdust magazine christmas hats royal baby games tmip arithmetic geometry wool polynomials php rugby books sound bodmas electromagnetic field pythagoras data statistics graph theory radio 4 captain scarlet dates people maths interpolation mathslogicbot european cup mathsteroids martin gardner map projections hexapawn folding tube maps trigonometry misleading statistics probability reuleaux polygons menace estimation approximation countdown curvature pac-man stickers bubble bobble manchester science festival braiding a gamut of games rhombicuboctahedron big internet math-off chebyshev palindromes tennis light video games fractals triangles speed programming london final fantasy oeis noughts and crosses dataset flexagons platonic solids sport manchester logic inline code golden ratio realhats weather station dragon curves plastic ratio chess

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2019