mscroggs.co.uk
mscroggs.co.uk

subscribe

Blog

Braiding, pt. 1: The question

 2016-06-29 
Since Electromagnetic Field 2014, I have been slowly making progress on a recreational math problem about braiding. In this blog post, I will show you the type of braid I am interested in and present the problem.

Making an (8,3) braid

To make what I will later refer to as an (8,3) braid, you will need:
First, cut an octagon from the cardboard. The easiest way to do this is to start with a rectangle, then cut its corners off.
Next, use the pencil to punch a hole in the middle of your octagon and cut a small slit in each face of the octagon.
Now, tie the ends of your wool together, and put them through the hole. pull each strand of wool into one of the slits.
Now you are ready to make a braid. Starting from the empty slit, count around to the third strand of will. Pull this out of its slit then into the empty slit. Then repeat this starting at the newly empty slit each time. After a short time, a braid should form through the hole in the cardboard.

The problem

I call the braid you have just made the (8,3) braid, as there are 8 slits and you move the 3rd strand each time. After I first made on of these braid, I began to wonder what was special about 8 and 3 to make this braid work, and for what other numbers \(a\) and \(b\) the (\(a\),\(b\)) would work.
In my next blog post, I will give two conditions on \(a\) and \(b\) that cause the braid to fail. Before you read that, I recommend having a go at the problem yourself. To help you on your way, I am compiling a list of braids that are known to work or fail at mscroggs.co.uk/braiding. Good luck!

Similar posts

Electromagnetic Field talk
Braiding, pt. 2
Christmas cross stitch
Logical contradictions

Comments

Comments in green were written by me. Comments in blue were not written by me.
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li>
To prove you are not a spam bot, please type "l" then "i" then "n" then "e" then "a" then "r" in the box below (case sensitive):

Archive

Show me a random blog post
 2020 

Mar 2020

Log-scaled axes

Feb 2020

PhD thesis, chapter ∞
PhD thesis, chapter 5
PhD thesis, chapter 4
PhD thesis, chapter 3
Inverting a matrix
PhD thesis, chapter 2

Jan 2020

PhD thesis, chapter 1
Gaussian elimination
Matrix multiplication
Christmas (2019) is over
 2019 
▼ show ▼
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

boundary element methods talking maths in public people maths martin gardner simultaneous equations light go football inverse matrices arithmetic wool dragon curves javascript bempp triangles ternary ucl books signorini conditions inline code pythagoras finite element method london chess frobel reddit advent calendar machine learning sobolev spaces harriss spiral fractals php twitter numerical analysis manchester science festival national lottery hexapawn propositional calculus reuleaux polygons royal institution geometry matt parker gaussian elimination computational complexity chalkdust magazine data binary tennis graphs bodmas realhats gerry anderson sorting stickers error bars chebyshev captain scarlet manchester map projections matrix of minors programming weak imposition probability matrices world cup pizza cutting matrix of cofactors logs mathsteroids draughts sound raspberry pi approximation big internet math-off rhombicuboctahedron matrix multiplication rugby tmip royal baby nine men's morris braiding estimation mathslogicbot cambridge palindromes statistics european cup radio 4 hats graph theory games golden ratio menace london underground misleading statistics flexagons latex dates polynomials dataset bubble bobble cross stitch folding tube maps game of life game show probability final fantasy sport plastic ratio exponential growth craft weather station pac-man coins data visualisation logic speed a gamut of games electromagnetic field convergence platonic solids hannah fry puzzles trigonometry oeis the aperiodical countdown christmas card mathsjam phd folding paper golden spiral wave scattering curvature noughts and crosses video games preconditioning accuracy determinants christmas interpolation news asteroids python

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2012–2020