mscroggs.co.uk
mscroggs.co.uk

subscribe

Blog

Zines, pt. 2

 2024-02-20 
Back in November, I wrote about making 2n-page zines. Thanks to some conversations I had at Big MathsJam in later November, I've been able to work out how many 128-page zines there are: 315434.

The insight

At Big MathsJam, Colin Beveridge pointed out something he'd noticed about the possible zines: when drawing the line connecting the pages in order, there were some line segments that were always included. For example, here are all of the possible 64-page zines:
Every single one of these includes these line segments:
Colin conjectured that for a zine of any size, a pattern like this of alternative horizontal segments must always be included. He was close to justifying this, and since MathsJam I've been able to fill in the full justificication.

The justificiation

First, consider the left-most column of pages. They must be connected like this:
If they were connected in any other way, there would be two vertical connections in a row, which would create a page that is impossible to open (as every other connection must be a horizontal that ends up in the spine). Additionally, the horizontal lines in this diagram must all be in the spine (as otherwise we again get pages that cannot be opened).
Next, consider a horizontal line that's in the spine (shown in red below), and we can look at all the possible ways to draw the line through the highlighted page, paying particular attention to the dashed blue line:
The six possible ways in which the line could travel through the highlighted page are:
The three options in the top row do not give a valid zine: the leftmost diagram has two vertical connections in a row (leading to pages that do not open). The other two diagrams in the top row have the horizontal line that we know is in the spine, followed by a horizontal line not in the spine, then a vertial line: this vertical line should be in the spine, but as it is vertical it cannot be (without making a page that doesn't open).
In each of the diagrams in the bottom row, the connection shown in dashed blue is included and must be in the spine: in the leftmost diagram, the horizontal line that we know is in the spine is followed by a horizontal not in the spine, then the horizinal in the dashed blue position that must therefore be in the spine. The othe other two diagrams in the bottom row, the dashed blue position is connected to a vertical line: this means that the dashed blue connection must be in the spine (as otherwise the vertical would cause a page that doesn't open).
Overall, we've now shown that the leftmost column of lines must always be included and must all be in the spine; and for each horizontal line in the spine, the line to the right of it after a single gap must also be included and in the spine. From this, it follows that all the horizontal lines in Colin's pattern must always be included.

Calculating the number of 128-page zines

Now that I knew that all these horizonal lines are always included, I was able to update the code I was using to find all the possible zines to use this. After a few hours, it had found all 315434 possibilites. I was very happy to get this total, as it was the same as the number that Luna (another attendee of Big MathsJam) had calculated but wasn't certain was correct.
The sequence of the number of 2n-page zines, including the newly calculated number, is now published on the OEIS. I think calculating number of 256-page zines is still beyond my code though...
×1                        
(Click on one of these icons to react to this blog post)

You might also enjoy...

Comments

Comments in green were written by me. Comments in blue were not written by me.
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li> <logo>
To prove you are not a spam bot, please type "sixa-y" backwards in the box below (case sensitive):

Archive

Show me a random blog post
 2024 

Feb 2024

Zines, pt. 2

Jan 2024

Christmas (2023) is over
 2023 
▼ show ▼
 2022 
▼ show ▼
 2021 
▼ show ▼
 2020 
▼ show ▼
 2019 
▼ show ▼
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

triangles palindromes pascal's triangle gaussian elimination matrix of minors folding tube maps game show probability a gamut of games bubble bobble fence posts boundary element methods sport weather station raspberry pi gather town 24 hour maths cambridge draughts golden spiral graphs electromagnetic field noughts and crosses runge's phenomenon stickers royal baby braiding captain scarlet data sobolev spaces games chebyshev asteroids geogebra accuracy rugby interpolation databet inverse matrices hats squares stirling numbers the aperiodical craft nine men's morris puzzles numerical analysis wave scattering geometry world cup mathsteroids finite element method datasaurus dozen martin gardner trigonometry tennis mathslogicbot golden ratio approximation convergence news christmas card rhombicuboctahedron hyperbolic surfaces arithmetic menace quadrilaterals mathsjam sorting harriss spiral flexagons video games frobel live stream javascript finite group gerry anderson pac-man fractals dates speed manchester science festival coins anscombe's quartet matrix multiplication oeis logo preconditioning latex london reuleaux polygons binary determinants big internet math-off plastic ratio bodmas machine learning folding paper people maths phd numbers weak imposition logs matt parker data visualisation matrix of cofactors guest posts computational complexity sound recursion php ucl polynomials talking maths in public simultaneous equations mean advent calendar reddit national lottery platonic solids graph theory hannah fry python matrices final fantasy countdown error bars crochet misleading statistics dinosaurs correlation turtles go exponential growth wool london underground chess zines cross stitch dragon curves errors game of life youtube pythagoras manchester radio 4 football dataset books pi approximation day fonts inline code pizza cutting probability crossnumber pi programming bempp estimation chalkdust magazine royal institution newcastle standard deviation realhats logic edinburgh ternary tmip curvature propositional calculus light map projections european cup statistics hexapawn christmas signorini conditions

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2012–2024