mscroggs.co.uk
mscroggs.co.uk

subscribe

Blog

Big Internet Math-Off stickers 2019

 2019-07-03 
This year's Big Internet Math-Off is now underway with 15 completely new contestants (plus one returning contender). As I'm not the returning contestant, I haven't been spending my time preparing my pitches. Instead, I've spent my time making an unofficial Big Internet Math-Off sticker book.
To complete the sticker book, you will need to collect 162 different stickers. Every day, you will be given a pack of 5 stickers; there are also some bonus packs available if you can find them (Hint: keep reading).

How many stickers will I need?

Using the same method as I did for last year's World Cup sticker book, you can work out that the expected number of stickers needed to finish the sticker book:
If you have already stuck \(n\) stickers into your album, then the probability that the next sticker you get is new is
$$\frac{162-n}{162}.$$
The probability that the second sticker you get is the next new sticker is
$$\mathbb{P}(\text{next sticker is not new})\times\mathbb{P}(\text{sticker after next is new})$$ $$=\frac{n}{162}\times\frac{162-n}{162}.$$
Following the same method, we can see that the probability that the \(i\)th sticker you buy is the next new sticker is
$$\left(\frac{n}{162}\right)^{i-1}\times\frac{162-n}{162}.$$
Using this, we can calculate the expected number of stickers you will need to buy until you find a new one:
$$\sum_{i=1}^{\infty}i \left(\frac{162-n}{162}\right) \left(\frac{n}{162}\right)^{i-1} = \frac{162}{162-n}$$
Therefore, to get all 162 stickers, you should expect to buy
$$\sum_{n=0}^{161}\frac{162}{162-n} = 918 \text{ stickers}.$$
Using just your daily packs, it will take you until the end of the year to collect this many stickers. Of course, you'll only need to collect this many if you don't swap your duplicate stickers.

How many stickers will I need if I swap?

To work out the expected number of stickers stickers you'd need if you swap, let's first think about two people who want to complete their stickerbooks together. If there are \(a\) stickers that both collectors need and \(b\) stickers that one collector has and the other one needs, then let \(E_{a,b}\) be the expected number of stickers they need to finish their sticker books. The next sticker they get could be one of three things:
Therefore, the expected number of stickers they need to complete their sticker books is
$$E_{a,b}=1+\frac{a}{162}E_{a-1,b+1}+\frac{b}{162}E_{a,b-1}+\frac{162-a-b}{162}E_{a,b}.$$
This can be rearranged to give
$$E_{a,b}= \frac{162}{a+b}+ \frac{a}{a+b}E_{a-1,b+1} +\frac{b}{a+b}E_{a,b-1} $$
We know that $E_{0,0}=0$ (as if \(a=0\) and \(b=0\), both collectors have already finished their sticker books). Using this and the formula above, we can work out that
$$E_{0,1}=162+E_{0,0}=162$$ $$E_{1,0}=162+E_{0,1}=324$$ $$E_{0,2}=\frac{162}2+E_{0,1}=243$$ $$E_{1,1}=\frac{162}2+\frac12E_{0,2}+\frac12E_{1,0}=364.5$$
... and so on until we find that \(E_{162,0}=1269\), and so our collectors should expect to collect 634 stickers each to complete their sticker books.
For three people, we can work out that if there are \(a\) stickers that all three need, \(b\) stickers that two need, and \(c\) stickers that one needs, then
$$ E_{a,b,c} = \frac{162}{a+b+c}+ \frac{a}{a+b+c}E_{a-1,b+1,c} +\frac{b}{a+b+c}E_{a,b-1,c+1} +\frac{c}{a+b+c}E_{a,b,c-1}. $$
In the same way as for two people, we find that \(E_{162,0,0}=1572\), and so our collectors should expect to collect 524 stickers each to complete their sticker books.
Doing the same thing for four people gives an expected 463 stickers required each.
After four people, however, the Python code I wrote to do these calculations takes too long to run, so instead I approximated the numbers by simulating 500 groups of \(n\) people collecting stickers, and taking the average number of stickers they needed. The results are shown in the graph below.
The red dots are the expected values we calculated exactly, and the blue crosses are the simulated values. It looks like you'll need to collect at least 250 stickers to finish the album: in order to get this many before the end of the Math-Off, you'll need to find 20 bonus packs...
Of course, these are just the mean values and you could get lucky and need fewer stickers. The next graph shows box plots with the quartiles of the data from the simulations.
So if you're lucky, you could complete the album with fewer stickers or fewer friends.
As a thank you for reading to the end of this blog post, here's a link that will give you two bonus packs and help you on your way to the 250 expected stickers...
                        
(Click on one of these icons to react to this blog post)

You might also enjoy...

Comments

Comments in green were written by me. Comments in blue were not written by me.
@Pat Ashforth: Thanks, fixed
Matthew
                 Reply
Link to sticker book, in the first paragraph, does not work. It points to mathoffstickbook.com
Pat Ashforth
                 Reply
@Road: Thanks, fixed
Matthew
                 Reply
minor typo for the 2 collector case


> and so our collectors should expect to collect 364 stickers

should be 634.
Road
                 Reply
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li> <logo>
To prove you are not a spam bot, please type "tneitouq" backwards in the box below (case sensitive):

Archive

Show me a random blog post
 2024 

Feb 2024

Zines, pt. 2

Jan 2024

Christmas (2023) is over
 2023 
▼ show ▼
 2022 
▼ show ▼
 2021 
▼ show ▼
 2020 
▼ show ▼
 2019 
▼ show ▼
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

hyperbolic surfaces sobolev spaces countdown big internet math-off radio 4 machine learning reddit quadrilaterals platonic solids correlation probability datasaurus dozen pizza cutting cambridge binary exponential growth youtube finite group final fantasy logic crochet runge's phenomenon graph theory plastic ratio pythagoras squares go golden spiral pac-man fractals boundary element methods weather station misleading statistics statistics the aperiodical pi approximation day chess numerical analysis ternary finite element method nine men's morris wave scattering mean tmip manchester signorini conditions zines javascript football turtles christmas card electromagnetic field books games data visualisation edinburgh errors oeis menace python matt parker draughts arithmetic stirling numbers triangles game of life rugby recursion fence posts databet captain scarlet sound london national lottery pi crossnumber inline code christmas advent calendar manchester science festival martin gardner logs asteroids raspberry pi video games simultaneous equations map projections matrix multiplication approximation curvature news reuleaux polygons royal institution geogebra sorting computational complexity ucl mathsteroids sport phd golden ratio convergence gerry anderson chalkdust magazine live stream palindromes weak imposition bodmas harriss spiral gaussian elimination matrix of minors trigonometry guest posts world cup realhats tennis bempp dataset inverse matrices geometry latex frobel puzzles determinants cross stitch rhombicuboctahedron polynomials propositional calculus dates hexapawn anscombe's quartet estimation coins mathsjam graphs talking maths in public hats dinosaurs programming light wool data stickers noughts and crosses folding paper people maths accuracy craft 24 hour maths bubble bobble a gamut of games folding tube maps speed preconditioning fonts london underground royal baby standard deviation logo european cup newcastle pascal's triangle dragon curves hannah fry chebyshev error bars interpolation mathslogicbot game show probability gather town matrix of cofactors braiding php numbers matrices flexagons

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2012–2024