mscroggs.co.uk
mscroggs.co.uk

subscribe

Blog

Harriss and other spirals

 2019-04-09 
In the latest issue of Chalkdust, I wrote an article with Edmund Harriss about the Harriss spiral that appears on the cover of the magazine. To draw a Harriss spiral, start with a rectangle whose side lengths are in the plastic ratio; that is the ratio \(1:\rho\) where \(\rho\) is the real solution of the equation \(x^3=x+1\), approximately 1.3247179.
A plastic rectangle
This rectangle can be split into a square and two rectangles similar to the original rectangle. These smaller rectangles can then be split up in the same manner.
Splitting a plastic rectangle into a square and two plastic rectangles.
Drawing two curves in each square gives the Harriss spiral.
A Harriss spiral
This spiral was inspired by the golden spiral, which is drawn in a rectangle whose side lengths are in the golden ratio of \(1:\phi\), where \(\phi\) is the positive solution of the equation \(x^2=x+1\) (approximately 1.6180339). This rectangle can be split into a square and one similar rectangle. Drawing one arc in each square gives a golden spiral.
A golden spiral

Continuing the pattern

The golden and Harriss spirals are both drawn in rectangles that can be split into a square and one or two similar rectangles.
The rectangles in which golden and Harriss spirals can be drawn.
Continuing the pattern of these arrangements suggests the following rectangle, split into a square and three similar rectangles:
Let the side of the square be 1 unit, and let each rectangle have sides in the ratio \(1:x\). We can then calculate that the lengths of the sides of each rectangle are as shown in the following diagram.
The side lengths of the large rectangle are \(\frac{1}{x^3}+\frac{1}{x^2}+\frac2x+1\) and \(\frac1{x^2}+\frac1x+1\). We want these to also be in the ratio \(1:x\). Therefore the following equation must hold:
$$\frac{1}{x^3}+\frac{1}{x^2}+\frac2x+1=x\left(\frac1{x^2}+\frac1x+1\right)$$
Rearranging this gives:
$$x^4-x^2-x-1=0$$ $$(x+1)(x^3-x^2-1)=0$$
This has one positive real solution:
$$x=\frac13\left( 1 +\sqrt[3]{\tfrac12(29-3\sqrt{93})} +\sqrt[3]{\tfrac12(29+3\sqrt{93})} \right).$$
This is equal to 1.4655712... Drawing three arcs in each square allows us to make a spiral from a rectangle with sides in this ratio:
A spiral which may or may not have a name yet.

Continuing the pattern

Adding a fourth rectangle leads to the following rectangle.
The side lengths of the largest rectangle are \(1+\frac2x+\frac3{x^2}+\frac1{x^3}+\frac1{x^4}\) and \(1+\frac2x+\frac1{x^2}+\frac1{x^3}\). Looking for the largest rectangle to also be in the ratio \(1:x\) leads to the equation:
$$1+\frac2x+\frac3{x^2}+\frac1{x^3}+\frac1{x^4} = x\left(1+\frac2x+\frac1{x^2}+\frac1{x^3}\right)$$ $$x^5+x^4-x^3-2x^2-x-1 = 0$$
This has one real solution, 1.3910491... Although for this rectangle, it's not obvious which arcs to draw to make a spiral (or maybe not possible to do it at all). But at least you get a pretty fractal:

Continuing the pattern

We could, of course, continue the pattern by repeatedly adding more rectangles. If we do this, we get the following polynomials and solutions:
Number of rectanglesPolynomialSolution
1\(x^2 - x - 1=0\)1.618033988749895
2\(x^3 - x - 1=0\)1.324717957244746
3\(x^4 - x^2 - x - 1=0\)1.465571231876768
4\(x^5 + x^4 - x^3 - 2x^2 - x - 1=0\)1.391049107172349
5\(x^6 + x^5 - 2x^3 - 3x^2 - x - 1=0\)1.426608021669601
6\(x^7 + 2x^6 - 2x^4 - 3x^3 - 4x^2 - x - 1=0\)1.4082770325090774
7\(x^8 + 2x^7 + 2x^6 - 2x^5 - 5x^4 - 4x^3 - 5x^2 - x - 1=0\)1.4172584399350432
8\(x^9 + 3x^8 + 2x^7 - 5x^5 - 9x^4 - 5x^3 - 6x^2 - x - 1=0\)1.412713760332943
9\(x^{10} + 3x^9 + 5x^8 - 5x^6 - 9x^5 - 14x^4 - 6x^3 - 7x^2 - x - 1=0\)1.414969877544769
The numbers in this table appear to be heading towards around 1.414, or \(\sqrt2\). This shouldn't come as too much of a surprise because \(1:\sqrt2\) is the ratio of the sides of A\(n\) paper (for \(n=0,1,2,...\)). A0 paper can be split up like this:
Splitting up a piece of A0 paper
This is a way of splitting up a \(1:\sqrt{2}\) rectangle into an infinite number of similar rectangles, arranged following the pattern, so it makes sense that the ratios converge to this.

Other patterns

In this post, we've only looked at splitting up rectangles into squares and similar rectangles following a particular pattern. Thinking about other arrangements leads to the following question:
Given two real numbers \(a\) and \(b\), when is it possible to split an \(a:b\) rectangle into squares and \(a:b\) rectangles?
If I get anywhere with this question, I'll post it here. Feel free to post your ideas in the comments below.

Similar posts

Dragon curves II
Christmas card 2019
TMiP 2019 treasure punt
Christmas card 2018

Comments

Comments in green were written by me. Comments in blue were not written by me.
@g0mrb: CORRECTION: There seems to be no way to correct the glaring error in that comment. A senior moment enabled me to reverse the nomenclature for paper sizes. Please read the suffixes as (n+1), (n+2), etc.
(anonymous)
                 Reply
I shall remain happy in the knowledge that you have shown graphically how an A(n) sheet, which is 2 x A(n-1) rectangles, is also equal to the infinite series : A(n-1) + A(n-2) + A(n-3) + A(n-4) + ... Thank-you, and best wishes for your search for the answer to your question.
g0mrb
                 Reply
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li>
To prove you are not a spam bot, please type "j" then "u" then "m" then "p" in the box below (case sensitive):

Archive

Show me a random blog post
 2020 

Feb 2020

PhD thesis, chapter ∞
PhD thesis, chapter 5
PhD thesis, chapter 4
PhD thesis, chapter 3
Inverting a matrix
PhD thesis, chapter 2

Jan 2020

PhD thesis, chapter 1
Gaussian elimination
Matrix multiplication
Christmas (2019) is over
 2019 
▼ show ▼
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

palindromes rugby martin gardner machine learning gerry anderson sport books royal baby noughts and crosses london underground final fantasy data visualisation plastic ratio harriss spiral tmip gaussian elimination christmas card boundary element methods light accuracy bubble bobble mathsjam wave scattering weather station matrices error bars probability polynomials signorini conditions game of life inline code electromagnetic field captain scarlet python interpolation phd matrix multiplication golden spiral tennis golden ratio platonic solids reddit ucl people maths finite element method manchester news football big internet math-off ternary stickers oeis world cup talking maths in public asteroids numerical analysis a gamut of games countdown puzzles realhats hats bempp javascript matt parker trigonometry cross stitch manchester science festival chalkdust magazine sobolev spaces rhombicuboctahedron menace braiding bodmas go hexapawn php games weak imposition estimation pac-man chebyshev graph theory misleading statistics preconditioning pythagoras twitter matrix of cofactors flexagons approximation statistics logic mathslogicbot determinants speed curvature inverse matrices geometry pizza cutting folding tube maps dataset programming draughts the aperiodical computational complexity frobel cambridge coins raspberry pi folding paper national lottery european cup dates matrix of minors triangles reuleaux polygons dragon curves london video games sorting hannah fry craft fractals sound nine men's morris propositional calculus royal institution latex map projections radio 4 christmas simultaneous equations wool data advent calendar chess game show probability arithmetic mathsteroids binary

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2012–2020