mscroggs.co.uk
mscroggs.co.uk

subscribe

Blog

Dragon curves

 2016-03-30 
Take a piece of paper. Fold it in half in the same direction many times. Now unfold it. What pattern will the folds make?
I first found this question in one of Martin Gardner's books. At first, you might that the answer will be simple, but if you look at the shapes made for a few folds, you will see otherwise:
Dragon curves of orders 1 to 6.
The curves formed are called dragon curves as they allegedly look like dragons with smoke rising from their nostrils. I'm not sure I see the resemblance:
An order 10 dragon curve.
As you increase the order of the curve (the number of times the paper was folded), the dragon curve squiggles across more of the plane, while never crossing itself. In fact, if the process was continued forever, an order infinity dragon curve would cover the whole plane, never crossing itself.
This is not the only way to cover a plane with dragon curves: the curves tessellate.
When tiled, this picture demonstrates how dragon curves tessellate. For a demonstration, try obtaining infinite lives...
Dragon curves of different orders can also fit together:

Drawing dragon curves

To generate digital dragon curves, first notice that an order \(n\) curve can be made from two order \(n-1\) curves:
This can easily be seen to be true if you consider folding paper: If you fold a strip of paper in half once, then \(n-1\) times, each half of the strip will have made an order \(n-1\) dragon curve. But the whole strip has been folded \(n\) times, so is an order \(n\) dragon curve.
Because of this, higher order dragons can be thought of as lots of lower order dragons tiled together. An the infinite dragon curve is actually equivalent to tiling the plane with a infinite number of dragons.
If you would like to create your own dragon curves, you can download the Python code I used to draw them from GitHub. If you are more of a thinker, then you might like to ponder what difference it would make if the folds used to make the dragon were in different directions.

Similar posts

Dragon curves II
PhD thesis, chapter 2
Visualising MENACE's learning
Harriss and other spirals

Comments

Comments in green were written by me. Comments in blue were not written by me.
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li>
To prove you are not a spam bot, please type "factor" in the box below (case sensitive):

Archive

Show me a random blog post
 2020 

Mar 2020

Log-scaled axes

Feb 2020

PhD thesis, chapter ∞
PhD thesis, chapter 5
PhD thesis, chapter 4
PhD thesis, chapter 3
Inverting a matrix
PhD thesis, chapter 2

Jan 2020

PhD thesis, chapter 1
Gaussian elimination
Matrix multiplication
Christmas (2019) is over
 2019 
▼ show ▼
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

bodmas arithmetic signorini conditions folding paper books palindromes christmas card matrix of minors curvature misleading statistics phd light dates golden spiral data wool weather station matt parker national lottery map projections manchester php cambridge games news gaussian elimination electromagnetic field rhombicuboctahedron estimation oeis graphs go royal baby a gamut of games latex polynomials binary plastic ratio platonic solids reddit hexapawn boundary element methods manchester science festival advent calendar dataset approximation cross stitch logs frobel noughts and crosses machine learning programming rugby stickers mathslogicbot determinants gerry anderson folding tube maps radio 4 graph theory sorting the aperiodical data visualisation chess asteroids triangles braiding coins accuracy pythagoras hannah fry london sport probability tennis draughts geometry pac-man trigonometry inverse matrices captain scarlet convergence video games dragon curves game show probability game of life numerical analysis matrix multiplication weak imposition football mathsteroids talking maths in public error bars countdown javascript london underground raspberry pi hats martin gardner golden ratio mathsjam harriss spiral wave scattering statistics menace nine men's morris bempp european cup fractals realhats pizza cutting propositional calculus craft computational complexity sound bubble bobble flexagons exponential growth ucl preconditioning puzzles finite element method christmas big internet math-off reuleaux polygons sobolev spaces final fantasy twitter inline code tmip python chebyshev world cup matrix of cofactors ternary royal institution chalkdust magazine logic matrices people maths interpolation simultaneous equations speed

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2012–2020