# Blog

## Archive

Show me a random blog post**2018**

### Sep 2018

Runge's Phenomenon### Jul 2018

World Cup stickers 2018, pt. 3Mathsteroids

### Jun 2018

World Cup stickers 2018, pt. 2### May 2018

A bad Puzzle for Today### Apr 2018

Building MENACEs for other games### Mar 2018

A 20,000-to-1 baby?World Cup stickers 2018

### Jan 2018

*Origins of World War I*

Christmas (2017) is over

**2017**

**2016**

**2015**

**2014**

**2013**

**2012**

## Tags

folding paper folding tube maps london underground platonic solids london rhombicuboctahedron raspberry pi weather station programming python php inline code news royal baby probability game show probability christmas flexagons frobel coins reuleaux polygons countdown football world cup sport stickers tennis braiding craft wool electromagnetic field people maths trigonometry logic propositional calculus twitter mathslogicbot oeis matt parker pac-man graph theory video games games chalkdust magazine menace machine learning javascript martin gardner noughts and crosses reddit national lottery rugby puzzles game of life dragon curves fractals pythagoras geometry triangles european cup dates palindromes chalkdust christmas card ternary bubble bobble asteroids final fantasy curvature binary arithmetic bodmas statistics error bars estimation accuracy misleading statistics pizza cutting captain scarlet gerry anderson light sound speed manchester science festival manchester dataset a gamut of games hexapawn nine men's morris draughts chess go radio 4 data map projections aperiodical big internet math-off sorting polynomials approximation interpolation chebyshev**2017-01-13**

## Is MEDUSA the new BODMAS?

I wrote this post with, and after much discussion with Adam Townsend. It also appeared on the Chalkdust Magazine blog.

Recently, Colin "IceCol" Beveridge blogged about something that's been irking him for a while: those annoying social media posts that tell you to work out a sum, such as \(3-3\times6+2\), and state that only $n$% of people will get it right (where \(n\) is quite small). Or as he calls it "fake maths".

This got me thinking about everyone's least favourite primary school acronym: BODMAS (sometimes known as BIDMAS, or PEMDAS if you're American). As I'm sure you've been trying to forget, BODMAS stands for "

**B**rackets, (to the power)**O**f,**D**ivision,**M**ultiplication,**A**ddition,**S**ubtraction" and tells you in which order the operations should be performed.Now, I agree that we all need to do operations in the same order (just imagine trying to explain your working out to someone who uses

*BADSOM*!) but BODMAS isn't the order mathematicians use. It's simply wrong. Take the sum \(4-3+1\) as an example. Anyone can tell you that the answer is 2. But BODMAS begs to differ: addition comes first, giving 0!The problem here is that in reality, we treat addition and subtraction as equally important, so sums involving just these two operations are calculated from left-to-right. This caveat is quite a lot more to remember on top of BODMAS, but there's actually no need: Doing all the subtractions before additions will always give you the same answer as going from left-to-right. The same applies to division and multiplication, but luckily these two are in the correct order already in BODMAS (but no luck if you're using PEMDAS).

So instead of BODMAS, we should be using

*BODMSA*. But that's unpronounceable, so instead we suggest that from now on you use**MEDUSA**. That's right,**MEDUSA**:**M**abano (*brackets*in Swahili)**E**xponentiation**D**ivision**U**kubuyabuyelela (*multiplication*in Zulu)**S**ubtraction**A**ddition

This is big news. MEDUSA vs BODMAS could be this year's pi vs tau... Although it's not actually the biggest issue when considering sums like \(3-3\times6+2\).

The real problem with \(3-3\times6+2\) is that it is written in a purposefully confusing and ambiguous order. Compare the following sums:

$$3-3\times6+2$$ $$3+2-3\times6$$ $$3+2-(3\times6)$$
In the latter two, it is much harder to make a mistake in the order of operations, because the correct order is much closer to normal left-to-right reading order, helping the reader to avoid common mistakes. Good mathematics is about good communication, not tricking people. This is why questions like this are "fake maths": real mathematicians would never ask them. If we take the time to write clearly, then I bet more than \(n\)% of people will be able get the correct answer.

### Similar posts

MENACE at Manchester Science Festival | Dragon curves II | The Mathematical Games of Martin Gardner | How to kick a conversion |

### Comments

Comments in green were written by me. Comments in blue were not written by me.

**2017-11-15**

tiny

**2017-11-15**

Blan

**Add a Comment**

2017-11-27