# Blog

## Pointless probability

**2013-12-15**

Last week, I was watching Pointless and began wondering how likely it is that a show features four new teams.

On the show, teams are given two chances to get to the final—if they are knocked out before the final round on their first appearance, then they return the following episode. In all the following, I assumed that there was an equal chance of all teams winning.

If there are four new teams on a episode, then one of these will win and not return and the other three will return. Therefore the next episode will have one new team (with probability 1). If there are three new teams on an episode: one of the new teams could win, meaning two teams return and two new teams on the next episode (with probability 3/4); or the returning team could win, meaning that there would only one new team on the next episode. These probabilities, and those for other numbers of teams are shown in the table below:

N^{o} of new teams today | |||||

N
^{o}of new teams tomorrow | 1 | 2 | 3 | 4 | |

1 | 0 | 0 | \(\frac{1}{4}\) | 1 | |

2 | 0 | \(\frac{1}{2}\) | \(\frac{3}{4}\) | 0 | |

3 | \(\frac{3}{4}\) | \(\frac{1}{2}\) | 0 | 0 | |

4 | \(\frac{1}{4}\) | 0 | 0 | 0 |

Call the probability of an episode having one, two, three or four new teams \(P_1\), \(P_2\), \(P_3\) and \(P_4\) respectively. After a few episodes, the following must be satisfied:

$$P_1=\frac{1}{4}P_3+P_4$$
$$P_2=\frac{1}{2}P_2+\frac{3}{4}P_3$$
$$P_3=\frac{3}{4}P_3+\frac{1}{2}P_4$$
$$P_4=\frac{1}{4}P_1$$
And the total probability must be one:

$$P_1+P_2+P_3+P_4=1$$
These simultaneous equations can be solved to find that:

$$P_1=\frac{4}{35}$$
$$P_2=\frac{18}{35}$$
$$P_3=\frac{12}{35}$$
$$P_4=\frac{1}{35}$$
So the probability that all the teams on an episode of Pointless are new is one in 35, meaning that once in every 35 episodes we should expect to see all new teams.

Edit: This blog answered the same question in a slightly different way before I got here.

### Similar posts

Countdown probability, pt. 2 | Countdown probability | Big Internet Math-Off stickers 2019 | World Cup stickers 2018, pt. 3 |

### Comments

Comments in green were written by me. Comments in blue were not written by me.

## Archive

Show me a random blog post**2019**

### Sep 2019

A non-converging LaTeX documentTMiP 2019 treasure punt

### Jul 2019

Big Internet Math-Off stickers 2019### Jun 2019

Proving a conjecture### Apr 2019

Harriss and other spirals### Mar 2019

realhats### Jan 2019

Christmas (2018) is over**2018**

**2017**

**2016**

**2015**

**2014**

**2013**

**2012**

## Tags

london underground harriss spiral triangles video games estimation plastic ratio cambridge curvature people maths christmas card dates misleading statistics manchester science festival error bars wool golden spiral realhats hats sorting gerry anderson manchester binary mathsjam stickers machine learning folding tube maps graph theory final fantasy mathslogicbot chess world cup bodmas electromagnetic field royal baby tennis puzzles light martin gardner inline code sound accuracy data rugby pizza cutting dragon curves tmip interpolation python map projections hexapawn draughts game of life folding paper rhombicuboctahedron matt parker chalkdust magazine captain scarlet arithmetic approximation fractals dataset football craft noughts and crosses frobel trigonometry pythagoras news polynomials european cup asteroids raspberry pi propositional calculus christmas the aperiodical geometry nine men's morris national lottery latex logic london oeis platonic solids coins chebyshev palindromes programming speed javascript talking maths in public menace cross stitch weather station go a gamut of games php flexagons big internet math-off sport countdown pac-man books mathsteroids statistics ternary reddit probability golden ratio bubble bobble reuleaux polygons games radio 4 braiding twitter game show probability**© Matthew Scroggs 2019**

Add a Comment