mscroggs.co.uk
mscroggs.co.uk

subscribe

Blog

Archive

Show me a random blog post
 2019 
 2018 
 2017 
 2016 
 2015 
 2014 
 2013 
 2012 

Tags

reuleaux polygons nine men's morris folding tube maps bodmas ternary programming chess chalkdust magazine people maths rhombicuboctahedron light world cup aperiodical big internet math-off radio 4 php folding paper sport weather station go craft hexapawn cross stitch raspberry pi braiding game show probability chebyshev stickers speed fractals palindromes twitter mathslogicbot football electromagnetic field approximation asteroids accuracy london underground statistics logic estimation games oeis london bubble bobble geometry puzzles christmas tennis captain scarlet probability realhats pythagoras national lottery christmas card machine learning pizza cutting hats countdown a gamut of games gerry anderson trigonometry game of life coins latex royal baby european cup flexagons mathsteroids video games data dataset reddit books interpolation final fantasy dragon curves python platonic solids martin gardner frobel golden ratio sound harriss spiral manchester science festival curvature matt parker triangles inline code golden spiral graph theory plastic ratio binary dates pac-man rugby noughts and crosses polynomials wool menace map projections propositional calculus javascript manchester the aperiodical error bars draughts news sorting misleading statistics arithmetic

Archive

Show me a random blog post
▼ show ▼

Pointless probability

 2013-12-15 
Last week, I was watching Pointless and began wondering how likely it is that a show features four new teams.
On the show, teams are given two chances to get to the final—if they are knocked out before the final round on their first appearance, then they return the following episode. In all the following, I assumed that there was an equal chance of all teams winning.
If there are four new teams on a episode, then one of these will win and not return and the other three will return. Therefore the next episode will have one new team (with probability 1). If there are three new teams on an episode: one of the new teams could win, meaning two teams return and two new teams on the next episode (with probability 3/4); or the returning team could win, meaning that there would only one new team on the next episode. These probabilities, and those for other numbers of teams are shown in the table below:
 No of new teams today
Noof new teams tomorrow
  1234
100\(\frac{1}{4}\)1
20\(\frac{1}{2}\)\(\frac{3}{4}\)0
3\(\frac{3}{4}\)\(\frac{1}{2}\)00
4\(\frac{1}{4}\)000
Call the probability of an episode having one, two, three or four new teams \(P_1\), \(P_2\), \(P_3\) and \(P_4\) respectively. After a few episodes, the following must be satisfied:
$$P_1=\frac{1}{4}P_3+P_4$$ $$P_2=\frac{1}{2}P_2+\frac{3}{4}P_3$$ $$P_3=\frac{3}{4}P_3+\frac{1}{2}P_4$$ $$P_4=\frac{1}{4}P_1$$
And the total probability must be one:
$$P_1+P_2+P_3+P_4=1$$
These simultaneous equations can be solved to find that:
$$P_1=\frac{4}{35}$$ $$P_2=\frac{18}{35}$$ $$P_3=\frac{12}{35}$$ $$P_4=\frac{1}{35}$$
So the probability that all the teams on an episode of Pointless are new is one in 35, meaning that once in every 35 episodes we should expect to see all new teams.
Edit: This blog answered the same question in a slightly different way before I got here.

Similar posts

Countdown probability, pt. 2
Countdown probability
World Cup stickers 2018, pt. 3
World Cup stickers 2018, pt. 2

Comments

Comments in green were written by me. Comments in blue were not written by me.
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li>
To prove you are not a spam bot, please type "rebmun" backwards in the box below (case sensitive):
© Matthew Scroggs 2019