mscroggs.co.uk
mscroggs.co.uk

subscribe

Blog

Tube map stellated rhombicuboctahedron

 2015-03-24 
This is the fourth post in a series of posts about tube map folding.
A while ago, I made this (a stellated rhombicuboctahedron):
Here are some hastily typed instructions for Matt Parker, who is making one at this month's Maths Jam. Other people are welcome to follow these instructions too.

You will need

Making a module

First, take a tube map and fold the cover over. This will ensure that your shape will have tube (map and not index) on the outside and you will have pages to tuck your tabs between later.
Now fold one corner diagonally across to another corner. It does not matter which diagonal you chose for the first piece but after this all following pieces must be the same as the first.
Now fold the overlapping bit back over the top.
Turn it over and fold this overlap over too.
You have made one module.
You will need 48 of these and some glue.

Putting it together

By slotting three or four of these modules together, you can make a pyramid with a triangle or square as its base.
A stellated rhombicuboctahedron is a rhombicuboctahedron with a pyramid, or stellation on each face. In other words, you now need to build a rhombicuboctahedron with the bases of pyramids like these. A rhombicuboctahedron looks like this:
en.wiki User Cyp, CC BY-SA 3.0
More usefully, its net looks like this:
To build a stellated rhombicuboctahedron, make this net, but with each shape as the base of a pyramid. This is what it will look like 6/48 tube maps in:
If you make on of these, please tweet me a photo so I can see it!
Edit: Proof that these instructions can be followed:
Previous post in series
Tube map Platonic solids, pt. 3
This is the fourth post in a series of posts about tube map folding.
Next post in series
Tube map kaleidocycles

Similar posts

Tube map Platonic solids, pt. 2
Tube map kaleidocycles
Tube map Platonic solids, pt. 3
Electromagnetic Field talk

Comments

Comments in green were written by me. Comments in blue were not written by me.
I wish you'd make the final stellation of the rhombicuboctahedron! And show us! I know the shapes of the faces but have been stuck two years on the assembly!
Roberts, David
                 Reply
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li>
To prove you are not a spam bot, please type "t" then "h" then "e" then "o" then "r" then "e" then "m" in the box below (case sensitive):

Archive

Show me a random blog post
 2020 

Feb 2020

PhD thesis, chapter ∞
PhD thesis, chapter 5
PhD thesis, chapter 4
PhD thesis, chapter 3
Inverting a matrix
PhD thesis, chapter 2

Jan 2020

PhD thesis, chapter 1
Gaussian elimination
Matrix multiplication
Christmas (2019) is over
 2019 
▼ show ▼
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

matrix multiplication european cup big internet math-off frobel nine men's morris palindromes harriss spiral royal baby estimation numerical analysis puzzles propositional calculus cross stitch curvature reuleaux polygons folding tube maps misleading statistics noughts and crosses people maths cambridge approximation wool plastic ratio advent calendar menace pac-man bempp binary pizza cutting determinants mathsteroids tmip pythagoras asteroids books geometry python sport electromagnetic field light computational complexity go london underground logic bodmas stickers latex interpolation statistics phd chalkdust magazine probability christmas card triangles trigonometry matrix of cofactors programming manchester mathsjam world cup game of life speed signorini conditions javascript data polynomials the aperiodical london news graph theory php radio 4 ucl realhats football royal institution manchester science festival game show probability platonic solids matt parker draughts gerry anderson dragon curves tennis dates gaussian elimination weak imposition simultaneous equations hannah fry inverse matrices weather station finite element method rugby national lottery sound accuracy fractals braiding chess machine learning reddit bubble bobble games golden spiral matrices hats countdown mathslogicbot inline code raspberry pi hexapawn preconditioning craft matrix of minors sobolev spaces talking maths in public flexagons final fantasy captain scarlet arithmetic chebyshev ternary oeis map projections data visualisation wave scattering golden ratio christmas sorting twitter rhombicuboctahedron a gamut of games boundary element methods video games dataset martin gardner folding paper coins error bars

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2012–2020